

Machines – Code – People

Christian Abegg; Peter Gfader

Machines – Code – People
50 things Zühlke engineers are passionate about

© 2019 Christian Abegg, Peter Gfader

Printing, Production and Layout:

BoD – Books on Demand, Norderstedt

5

Table of contents

Foreword (Nicolas Durville) . 9
Preface . 11

Part I: Me 13

Coding on purpose (Adrian Herzog) . .15
Fast tracking into new projects – take notes! (Sven Bayer) 20
If you like it then you shouldn’t put some code in it (Jonathan
 Rothwell) . 25
Never forget (Igor Spasić) . 28
Pragmatic documentation (Ognjen Blagojević) 30
Rules are dangerous (Rolf Bruderer) . 34
Start using a time management technique today (Christian Abegg) 38
Why you need to go visual (Gabriel Duss) . 42
“You are not a software engineer” – What am I then? (Stefan
 Djelekar) .47

Part II: People 51

“As long as you live under my roof, you’ll do as I say” –
If the project manager leads differently than I would (Sabrina
Lange) . 53
Business readiness – is there readiness for agile development
in business? (Ina Paschen) . 56
CYA: Cover your ass (Romano Roth) . 59
Digitalization and its impact on customer interaction (Beat Bischof) 62
Discipline flow (Stephan Janisch) . 68
Don’t teach kids programming (Igor Spasić) .74
From enthusiasm to commercial success (Bojan Jelaca) 76

6

Know-how transfer – just explaining once is not enough (Christoph
Zuber) . 79
Lean startup: taming the uncertainty (Eric Fehse, Sven Bünte, Ste-
fan Reichert) . 83
Meeting with users is essential for creating
great products (Markus Flückiger) . .87
Some inconvenient truths about the digitalization
of your business (Moritz Gomm) . 96
Team fit (Marko Simić) . 103
The evangelist and the chameleon (Franziska Meyer) 106
The evolution of support and operations team setups (Tijana Krsta-
jic, Guido Angenendt) . 110
The house of the six wise men (Michael Richter) 116
Time to say goodbye (Sabrina Lange) . 119
Transitioning systems engineering into the lean-agile world (Rolf P .
Maisch) . 124
We are all engineers but work quite differently:
software engineers, electronics engineers, mechanics engineers
(Thomas Weber) .130
What’s wrong with: “I don’t write any tests, since I am
not a tester”? (Peter Gfader) . 136
When machine learning meets software engineering (Wolfgang
Giersche) .140
Why every project should have gardeners (Sabrina Lange) 143
Why you should create a paper prototype –
and how to test it with your users (Eric Fehse, Manuel Jung) 147
You DiD what? (Marko Ivanović) . 151
Your team needs a tech lead, not a lead techie (Daniel Mölle) 156

Part III: Machines, Code 163

Application first – a bottom-up architecture approach (Markus
Rehrs) . 165

7

Architectural programming (Stephan Janisch, Christian Eder, Alex-
ander Derenbach) . 169
Architectural programming in the development workflow (Stephan
Janisch, Christian Eder, Alexander Derenbach) 175
CI and CD done right (Florian Besser) . 178
Clean code best practices (Milan Milanović) 184
Codify your developer VMs! (Torben Knerr) . 187
Containerisation and why to use it (Florian Besser) 191
Do something about that slow SQL query (Ognjen Blagojević) 195
Frontend is not your enemy (Janko Sokolović) 198
How to deal with flaky system tests (Adrian Herzog) 203
Making your tests run fast (Simon Lehmann) 208
Optimization and realization (Igor Spasić) . 212
Rules for building systems (Vassilis Rizopoulos) 214
Successful agile system development with continuous
system integration (Erik Steiner) . 220
The best technology is not always the best choice (Carsten Kind) .223
Watch your state (Raphael M . Reischuk) .227
You always have time for a proper root cause analysis (Matthias
Meid) .232

9

Foreword

I can still remember my early days as a software developer after
my studies . It was during the wild years in the middle of the “new
econo my” and I had to get up to speed with new projects and acquire
the necessary technical knowledge within a very short time . I had to
gain a lot of experience for myself and I learned a great amount on
the job; unfortunately, sometimes the hard way .

Later, as a project manager, I learned a great deal about how to collabo-
rate with people and, above all, that, alongside technological know-
ledge, cooperation, leadership, working techniques, communication
and relationship maintenance are very important . In my experience,
projects often fail not because of the technology, but because of un-
clear or incorrect requirements, a lack of willingness to cooperate,
sheer complexity or because the organization is simply overstrained .

The collection “Machines, Code, People” is a wonderful summary of
what I have often experienced myself and what is really important in
everyday project work . Code and machines together build a solution .
Knowing these technologies is crucial . And to bring about real innova-
tion, it is equally important to have the right people on board, to build
up a great team and to really understand the needs of the customer .

This impressive collection was created as a joint effort within the
Zühlke Group across all areas and it makes me extremely proud that so
many authors have contributed so actively and with so much passion .

I hope it will inspire you and give you many insights that will benefit
you in your daily work .

Nicolas Durville, CEO Zühlke Switzerland

11

Preface

Electronic version

This book is also available as eBook:

HTML: https://zuehlke .github .io/machines-code-people/
EPUB: https://zuehlke .github .io/machines-code-people/
 machines-code-people .epub
MOBI: https://zuehlke .github .io/machines-code-people/
 machines-code-people .mobi
PDF: https://zuehlke .github .io/machines-code-people/
 machines-code-people .pdf

Further reading and additional resources

Some articles refer to further reading and additional resources . As
most of them are only available online, the printed version of this book
contains QR codes referring to the HTML version of the article where
the links to these external resources can be found .

PART I:
ME

15

Coding on purpose

When carrying out a project, it is essential to know its ultimate goal .
And usually we start our projects exactly there, with some sort of
mission statement, defining the goal of our endeavour . But it is all too
easy to lose sight of this goal in the daily struggle of solving specific
issues along the way . That’s why many methodologies in software
development try to help us by keeping the project aligned with its
purpose .

• In RUP, one tries to establish traceability from lower level items to
higher level goals .

• Use cases represent a goal at some level of abstraction . A use case
diagram shows how lower level use cases support higher level use
cases .

• User stories are often formulated according to a template that in-
cludes a goal and a benefit (e .g . “as <role> I want to <goal> so that
<benefit>”).

• With user story maps we sort user stories by how important they
are in achieving a goal .

• An impact map traces down the high level goals to stakeholders,
impacts and finally deliverables.

• Design thinking has a strong focus on identifying and understand-
ing customer needs.

• The idea of the minimal viable product makes the point that we
should only build as much as is necessary in order to achieve the
desired goal .

If you’ve read up to here and have not thought of Simon Sinek yet, this
can only be because you don’t know him yet . He’s currently the loudest
voice when it comes to telling everybody to start with why . Look up
his name if you have time for a YouTube evening .

16

Unfortunately, there are many areas that make no reference at all to
the goal . Some examples:

• Code (and most other models of software, like UML diagrams),
which is mostly imperative in its nature, just declares how some-
thing is achieved but does not state why . Although the purpose
was hopefully clear to the person writing the code, it is likely to be
unknown to the poor coder maintaining the code years later .

• I’ve seen too many bad user stories that either don’t state a goal and
benefit or if they do, it’s just a wild guess by somebody who wanted
to satisfy the template structure . And worse: higher level items like
epics fail to mention the purpose even more often .

• BDD (Behaviour Driven Design) typically uses the Given, When, Then
pattern, which only describes what the software does, but not why .

• Many consulting companies get told what to build instead of what
problem to solve or what outcome to achieve .

• Bad managers / leaders might tell you what to build instead of what
outcome to strive for .

When the solution becomes the problem

Sometimes you are immersed in a tricky problem . While some people
might just give up, your passion for problem solving results in you
pondering over the puzzle for hours and days, maybe even weeks .
While working on the solution for your customer’s problem, the solu-
tion suddenly turned into the problem . Or as Paul Watzlawick says:

By searching for solutions we restrict ourselves with constraints
that don’t exist in the original problem.

When you’re stuck in such a situation it’s worth taking one or two
steps back and asking: what was the goal we wanted to achieve? And

17

also: why did we want to achieve this goal in the first place? This helps
you increase the scope for possible solutions and hopefully allows
you to discover that the problem you’re trying to solve does not even
need solving but instead you find a simpler, less problematic solution
to the initial why . If you ask why five times, this approach even has
a name: The five whys technique.

Measure impact, not output

Think about how you track the achievement of the desired outcome in
your project . In the end, it’s the job of your Product Owner or Product
Manager, but if you think they could use some inspiration, they would
probably be grateful for some suggestions . As an example, John Cutler
proposes to add a column to your task board called Achieved desired
outcome . And Gregor Ilg says:

Don’t celebrate when you have launched a product. Celebrate once
you’ve learned from it.

Instead of measuring how many story points we can deliver per
sprint, we should apply our maths skills much more to measuring
and tracking whether we have achieved the desired outcomes in pro-
duction . Do we achieve the desired user adoption? Has the desired
percentage of business shifted to the new platform? Do we save the
desired amount of manual work using the new system? And what do
our end users tell us?

18

Empathise with the people that matter

Empathy and good collaboration with end users is certainly important
for building a good user experience . But listening to the users is not
enough .

You might hear a lot of different goals from different people in the
project. Especially if there’s a lack of official goals, people might fill
them up with their own hidden or not so hidden agenda. Try to figure
out who is incurring expense for the project and try to understand
what outcomes they hope to achieve with this investment .

Lead through purpose

When leading a team, you should put a strong focus on communicat-
ing the why of the things that you or your team are asked to do, and
judging your success by whether the why is fulfilled and not whether
you built exactly what was asked for or whether you did it how it was
expected that you should do it .

Coding tips

• If you get told what to do it’s usually good to ask what for, as this
gives you more flexibility in finding an economic solution for the
desired outcome .

• When coding, be aware that code does not document the why par-
ticularly well . So be nice to your fellow coders and leave mean-
ingful comments explaining the why or pointing to the relevant
documentation .

• When asking somebody for help, tell them what problem you are

19

trying to solve, not just what problem you have with your current
solution approach (see “The XY Problem”) .

Wrap up

If all of this was a bit much, here’s one simple tip: no matter how min-
imalistic you want to keep your user stories, make sure they contain
at least the desired impact .

By Adrian Herzog

Links:

20

Fast tracking into new projects –
take notes!

Everybody in the software industry will come to a point when one has
to enter a new project . Then, we need to familiarise ourselves with a
different project environment and depend on other team members .
Our decisions have to be thought out carefully until we become famil-
iar with the project . Clearly, it is desirable to keep the transition-time
as short as possible . A way of achieving this is by taking notes in a
structured way . When we join a new project, this enables us to become
an efficient team member as fast as possible.

In the past decades, more and more software projects have shifted to
agile methodologies like Scrum . Because of that, the software industry
requires employees to become more self-organised . Team members
with this skill require less management and increase the project ve-
locity on that way .

In this article, I show you how taking and organising notes, hand-
written and digital, can help you to incorporate faster in new projects .

Ways to organise notes

Storing notes electronically on your laptop is the standard way to go .
There are many different alternatives like Microsoft OneNote, Ever-
note, or your project’s wiki . However, having a laptop on hand is not
always an option . Sometimes you need to take notes by hand . There
are different solutions, like a tablet with a pen or a paper notebook .
In my optinion, the best combination is between a tablet or paper
notebook and a laptop . For organising notes, I recommend using the
outlining method. To me this has proven to be very effective to filter

21

important information and concentrate on keywords . You can even
further enhance this by summarising flows and using arrows to cre-
ate connections . The usage of drawings and abbreviations can im-
prove your note taking even more . While you take a note, however,
you should not forget to keep eye contact with the speaker from time
to time .

Take notes to get started

To get started in the project, you should identify individuals that
can provide you access to the infrastructure, wiki, and task tracking
board . For project related abbreviations, it might be a good idea to
maintain a glossary . Once you get access to the project glossary, you
can update your entries to it . By looking at the task tracking board
or the wiki and by talking to stakeholders, you can gather valuable
information about the Use Cases of the software your team works .

Take notes to advance

Once you got started in the project, you can gather further information
so you stand out in the project very quickly .

Some tasks that you perform can occur more than once . If that is the
case, your team might benefit from notes of the single steps. This also
helps you to dive into the project faster and remove impediments in
the project as an independent member .

Maintaining a stakeholder list and stakeholder matrixwill help you
to prioritise their demands . If youcombine their intentions with the
stakeholder matrix you will be able to steer the project better .

22

• It is crucial that you understand the vision of the project . The vi-
sion consists of a compelling destination, a strategic roadmap, and
aligned partners . It helps you to identify the ideal end state of your
project . The strategies of the project roadmap should be your base
to make decisions that are aligned with the project’s vision .

23

Considering the team’s experience is very important . They have a con-
cept of how to steer the project and how to avoid mistakes that have
been made before . However, you also should gather enough informa-
tion to make your own informed decisions .

24

You should keep a record of your ideas, preferably in a Kanban board .
To evaluate your ideas, you can calculate their return of investment
and alignment with the project’s vision . To prioritise your ideas you
should consider whether and how much you can leverage them for your
project’s current situation . Also it is a good ideal to bring up your ideas
in meetings or talk with your colleagues and challenge them together .

Conclusion

When you join a new project, you have to deal with various types of in-
formation related to this specific project. You have to be able to extract
the important bits and pieces by interacting with the team . Then you
have to take notes of this information and store it, either handwritten
or on your laptop . By doing this in an organised way with structured
notes, you can quickly get to a point where you thrive and increase
your performance . In no time, you will be valued as a fully featured
team member and you can participate on important decisions .

By Sven Bayer

25

If you like it then you
shouldn’t put some code in it

In 2017, a crowdfunding campaign from Australia claimed that “in
a world of technical overload there is sometimes no space to fit the
simple things on your [bicycle] handlebars .” They wanted AU$85,000
to manufacture ‘the simple bike bell’ .

The ‘simple’ bike bell worked like this: Instead of striking an actual
clapper against a metal bell, you have a small button which you mount
on your handlebars . You pair the button with your phone (which must
run a supported operating system .) When you want to use the bell,
you press the Bluetooth button . This sends a message to your phone
(hopefully charged, within range, with Bluetooth turned on, and with
the manufacturer’s app open and running .) Provided these conditions
are all met, your phone’s speaker plays the sound of a bicycle bell . . .
probably . What could be simpler than that? (Kickstarter users only
pledged 1 .7% of its funding target .)

What are the thought processes that lead to trashy or tasteless IoT
solutions like this? It’s simple: someone somewhere sees an itch,
which they scratch with what they know: technology . They then pat
themselves on the back for being so ‘disruptive’, make a few press
releases, and voilà: profit. (Maybe.)

Meanwhile, on our morning coffee break, we read the news and roar
with laughter . “Remember that awful Fitbit for dogs thing? They were
running a six-year-old version of Android . Now they’ve all been pwned
and are being used to mine bitcoin! Hah! What were they thinking?”

We then walk back into the office, and proceed to make exactly the
same mistakes as the people who make these terrible ‘connected’ cat

26

litter trays and ‘smart’ toasters . As software developers, we follow the
same thought process every day . We see someone with a problem, dig
into our toolbox of technical solutions, and try to sell one of them to
fix it in a clumsy way.

Alarm bells should ring when you end up changing a problem to fit
your proposed solution . “The Latin alphabet was created thousands of
years ago and is optimised for writing, not reading,” says the website
for a ‘horizontally compact’ font . “About time for an update, no?”

The ‘update’? Replace the alphabet with dots bearing no resemblance
to the conventional alphabet, and squidge words into something that
looks like the read-out from a radio telescope . Sound confusing? Not
to worry: the website claims it takes “about 20 minutes to get [the
glyphs] into your short-term memory . Skip the next episode of Glee
and test your mental acuity!”

Where’s the joy in reading a good book, if understanding the words
becomes a test of mental acuity? Where’s the convenience in cycling
to the shops for a loaf of bread, if you have to spend five minutes
un-pairing and re-pairing your phone with the ‘simple’ bike bell first?

In 1927, ninety years before the silly bike bell, HG Wells, author of The
War of the Worlds, wrote in the New York Times: “I have recently seen
the silliest film.” He took issue with the film’s core principle, that
automation creates drudgery: Wells complained it anticipated “not
unemployment, but drudge employment, which is [. . .] passing away .”
The film Wells was eviscerating? Fritz Lang’s Metropolis, in which
armies of workers toil in servitude to giant automata .

Seventy-one years later, low-paid armies of workers are employed
by financial institutions, to manually enter data into five separate
systems; and by social networks, to manually decide if images are

27

too gory, or pornographic, to be allowed . Automation is here, and our
half-baked idea of ‘efficiency’ has begotten drudgery.

The Agile Manifesto defines simplicity as “maximising the amount of
work not done .” We take this to mean minimising lines of code, cyclo-
matic complexity, or the number of bugs we fix. Some people even use
it to legitimise hacks, or “smashing it in .” I think this misses the point .

Instead, we could prioritise minimising the amount of drudgery we
create with our software . We could minimise the number of hacks or
shortcuts our users have to use to get the result they want . And yes,
sometimes this means maximising the amount of work we don’t do,
by minimising the amount of software we build to solve the problem .
After all, software means bugs; as soon as it connects to the internet,
it becomes an attack surface .

Maximising the amount of stuff not done isn’t a radical concept . Me-
chanical engineers know how important it is to reduce moving parts
to a minimum . A bike bell that consists of a clapper striking a metal
surface is less complex than a Bluetooth button/mobile app combina-
tion, and less expensive; it’s also more reliable, and more predictable .
“Less is more” is nothing new .

We can, and should, do better than to trammel people with unnec-
essary new drudgery . Think about this the next time you want to
embark on a massive, all-encompassing refactor of an old monolith
into hundreds of microservices . Take a step back, and don’t waste your
time on an ‘engineer’s solution .’

By Jonathan Rothwell

28

Never forget

We code software . Every day, every hour, an endless stream of code
gets written and merged into products . The human-written software
codebase is massive . The Space Shuttle runs on 400 thousand lines of
code . The Large Hadron Collider uses 50 million lines . And all Google
services combined run on 2 billion lines of code .

Software runs technology . Technology has become omnipresent in
our lives; from pocket devices to augmented reality and artificial in-
telligence . The impact that technology is making on human lives is
undeniable and inevitable . This fact has its burden: is the technology
growing in the right direction?

The answer to that question echoes from the past: it can be found in
the thoughts of the first computer engineers and among the ideas
of the first technology visionaries. They all promote the very same
message: the purpose of technology is not about having everyone in-
teracting online all the time; technology is not a universal remedy
(hard) to swallow .

Technology is the challenge for humankind to evolve . It is an oppor-
tunity to dramatically increase the collective knowledge, to address
the most challenging problems . It is a call to action for public and
private sectors to recognize the exponential growth of humankind’s
challenges, and to provide the vigorous, proactive, strategic pursuit
of meaningful evolution .

We, the developers, are makers, creators . We are given the tools and
the power to produce the code that will shape the future . We must
come up with disruptive ideas that will lead to organisational and
societal transformations . Such an attitude should be part of the DNA

29

of any software company that shapes products, services and work .
We are here not to code, but to answer the challenges .

Hello world . Never forget to keep evolving .

By Igor Spasić

30

Pragmatic documentation

Writing documentation is a task that most programmers find tire-
some . The pattern I see is that they are asked to write documentation
without understanding:

• for whom the documentation is being written
• why the documentation is being written
• how the documentation should be written
• where the documentation is written

By asking yourself these questions, the documentation can end up
having a completely different form than originally expected .

For whom is the documentation being written?

With regard to the first question – For whom am I writing this docu-
mentation? – you should have a clear answer before you even start
writing . Sometimes these are particular people you know, sometimes
they are existing users that you don’t know, and sometimes it is not
yet known who the readers will be .

If you have access to at least some of the people who will read your
documentation, talk to them about the documentation you are writ-
ing . Explain to them that you are doing something they should use
and that you want to do it in the best possible way . They will surely
help you, because it is in their interest . After all, they are the ones who
will eventually read the documentation .

If your users are not yet known, it’s best to try to imagine a future
reader and try to put yourself in his/her shoes . It’s not always easy,

31

but thinking from the perspective of other readers – albeit fictitious –
will help you decide what to write .

Why is the documentation being written?

To the second question – Why? – the answer is: to explain to the reader
things they don’t know . Remember this . If you explain to the reader
what they already know, your documentation will be boring and will
not be read . It is therefore important that you understand what the
reader does not know before starting to write the documentation . If
the intended audience have varying degrees of background knowl-
edge, this makes things a bit more complicated . You need to know
which things most of your readers don’t know, and which only certain
individuals don’t, and organize the documentation accordingly .

How should the documentation be written?

When you have answers to the questions for whom and why you are
writing documentation, the third question – How to write it? – can
be a little easier to answer . Put yourself in the role of a person who
needs help . Why? Because, people value their own time . They try to be
efficient, and prefer to switch to action as soon as possible, instead of
reading up front about what to do and how to do it . Therefore, most
of the people won’t even read the documentation until they need help .
Try to imagine a very concrete thing that your reader might fail to
do or fail to understand by themselves . If you already have potential
future readers, you can create a list of questions for which they would
like to have an answer. It is good if the questions are very specific, e.g.:

1 . How do I add a new user who is simultaneously in Role A and Role
B?

32

2 . Does the magnifying glass mean a search of data or a detailed
overview?

3 . How do I recover the object that I just deleted?

If the short answers to the collected questions are sufficient for your
readers, then write them down, and call the documents FAQ or Q&A
or something like that .

Sometimes, the gathered questions might indicate that there is some-
thing that could be done better regarding the user interface . For the
three questions stated above, you could, instead of writing answers,
actually create UI changes that will naturally lead the user to the an-
swer (a principle known in UI design as “Don’t make me think”), e .g .:

1 . Instead of the label “Role”, use “Role(s)”, and when the user adds
one role, immediately display a plus sign (+) to indicate that more
roles can be added .

2. Add “Search” as tooltip text to the magnifier glass icon.
3 . After deletion, open an (unintrusive) infobox informing the user

of the procedure for undeleting an object .

Often, through the questions of future readers, you will understand
that the problem is that the reader lacks some knowledge to under-
stand your answer . In that case it will be necessary to help them
acquire that knowledge . One way is to add introductory chapters in
which you explain the necessary concepts . Other way is to provide
links in your documentation where the reader can supplement their
knowledge .

When you have a text in which you explain the concepts, links to
external materials, and the answers to questions that are troubling
your readers, you should use this material to group and organize docu-
mentation so that it has a logical and easily understandable structure .

33

As with programming, try to adhere to the principle of least surprise,
that is, try to put each chapter in the place where most of the readers
would expect to find it.

Where is the documentation written?

The final question: Where should you publish the documentation? An-
swer: Where most readers will look first. Help to log on to the system
should be located as a link on the Login page . Help for compiling and
running an application can be a file (for example, RUNNING.md) in the
root of your project . Help for certain functionality of your software is
best if it can be available in the user interface where this functionality
is (see previously given example for undelete), and HowTo article for
DevOps – on the corporate wiki / knowledge base .

So, the methodology is always the same – putting yourself in the
reader’s shoes . It is a powerful technique that can be used in various
business and private situations, and is especially useful when writing
documentation .

By Ognjen Blagojević

34

Rules are dangerous

Rules followed blindly in a dogmatic way do a lot of harm . This is an
uncomfortable truth especially for us, as engineers . As such we are
used to looking at the world in terms of rigid rules, true and false, if
and else. We like to have crystal clear and exact definitions, guidelines
or best practices on how to do something . This is not a bad thing in
itself . But we all must be very careful that we do not fall into the trap
of just following such rules blindly without giving careful thought to
consequences .

Examples of rules from software projects

Here are some examples of rules in software engineering that I have
seen to cause troubles in projects:

• The famous rule “working software over comprehensive documen-
tation” from the agile manifesto is often used as an excuse not to
write any documentation and deny putting any effort into it . In the
long run this is not very helpful in the context of a complex software
system where a minimal and helpful documentation is needed to
efficiently maintain, extend or operate these systems. Not to write
any documentation at all was probably not the intention of the
authors of the agile manifesto .

• The dependency inversion principle says “Abstractions should not
depend on details . Details should depend on abstractions” . I have
seen projects that tried to follow this principle very strictly and
everywhere in their software . They therefore totally avoided di-
rectly using any concrete class as much as possible . As a result,
there were a lot of interfaces with only one implementation class
each and many factories to create instances of those classes . This

35

resulted in a code base that is much more complex than needed . It
makes the software difficult to understand and maintain without
bringing any benefit of really needed flexibility into that software.

• People read the book about “Clean Code” that says that many code
comments can be avoided by writing self-explaining code instead .
While this is true for many cases, the rule is often misused by de-
velopers for arguing that they do not need to write any comments
at all in the source code . But there are many things that you cannot
explain by using good method or variable names only, e .g . why
you had to implement something like that . For this purpose, good
comments are still very valuable and should not be denied . I would
say that a well-expressed comment can explain much more than a
hundred good variable names .

• An article by Martin Fowler about the “Page Object Pattern” stated
that one should never put assertions into page objects . Someone
read that article and wanted to convince the whole project team
that it was very important to follow this rule very strictly . The ar-
guments for the rule in the blog post were not very convincing to
me . I brought up many examples where breaking that rule caused
much more benefit than sticking to it. Nevertheless, I was not taken
seriously . Because it was written by Martin Fowler, it counted as
if it was written in the bible . Nobody wanted to constructively ar-
gue about it anymore . Fun fact: in the meantime, Martin Fowler
changed his article to mention both opinions on this topic . This at
least leaves the option open to the reader to decide what works best
in their concrete context . Unfortunately, not all famous technical
opinion-makers are as wise as Mr . Fowler .

Please, do not get me wrong: I like the Agile Manifesto, the SOLID
Principles, Clean Code, Martin Fowler in general, and even his arti-
cle about the Page Object Pattern . Those are all practices that I ap-
preciate a great deal and that have influenced my way of thinking
and working . But, nevertheless, all these things also come with the

36

danger of undesired side-effects, if they are just followed blindly in
a dogmatic manner .

The problems with rules

The problems I often see in projects with such rules are as follows:

• Applying rules in the wrong context might not have the desired
effect at all

• Using rules more strictly than they were intended to be used causes
adverse effects

• Applying rules without really understanding them can result in
more harm than good to the project

• Treating rules as God-given, causes people not to reason about these
rules anymore . This can cause a destructive discussion culture and
lead to bad decisions without real arguments .

Recommendations

Here are my recommendations on how to mitigate the problems with
such rules in your projects:

• We must all be always willing to explain ourselves, why we do
something in a particular way and what the arguments are for
applying a rule in a particular context . Something like “just because
our process manual says so” or “because I’ve read it in that article”
is usually not a good answer .

• Don’t try to replace critical thinking and adaptive methods with
exact and rigid rules that people must follow strictly .

• Do not read my recommendations here in a dogmatic way . Doing so
would be to conclude: “Rolf said rules are bad and harmful, so let’s

37

trash all the rules in our project and not follow the Scrum Guide,
our Definition of Done, Clean Code and similar things anymore”.
This was not my message at all!

• Instead: Discuss, write down and live these rules in your team, but
see them more as a guide than as precise rules to be 100% rigidly
followed in every case .

• Note down not just the rules you use in your project, but also the
arguments why a rule should be applied .

• Be open to discussing and re-explaining rules in your projects with
your team members and to adjusting the rules to changes in the
context (e .g . growing software, growing team, shorter release cy-
cles, different team members, new ideas, etc .)

• Be critical of existing rules, but also respect and try to understand
them in the first place.

Conclusion

There are a lot of clever rules or ideas out there on the World Wide
Web, in books, in courses or in your projects, as well as in this collec-
tion of articles by my brilliant co-workers . Such rules can help you
when applied wisely in the right context . But don’t let your teams
suffer from dictatorship by dogmatic rules and therefore follow my
recommendations .

By Rolf Bruderer

Further reading:

38

Start using a time management
technique today

So you take a task from the board, work on it from A to Z and on
nothing else . Sounds familiar? I mainly know this situation theoret-
ically . In real life there is always some interruption like a review to
be conducted, a bug to be analysed or a phone call to be answered .
And having your smartphone laying around vibrating with the latest
funny pictures on WhatsApp doesn’t help either . Even though we use
a prioritised list of work items in our teams, my work as a developer
is far from being focused on a single task .

Unlike people who perform at their best when being a “firefighter”,
I do not like this mode of work . But what can you do about it? Most
teams use a regular meeting to improve the way that the team
works together . Some things can be achieved here, but on a per-
sonal level, you will still have to find a way to focus and deal with
interruptions . This is where personal time management techniques
come in .

There are a lot of techniques available – I recommend having a look
at the following three:

Getting things done

Getting things done provides a comprehensive way of sorting all in-
coming stuff into various buckets like a waiting list, a calendar, an
archive or even the waste bin . I never feel that I have huge amounts
of stuff to organise so I have never applied this technique . Reading
through the documentation gives you some good hints regarding how
to handle incoming stuff though:

39

• Is the stuff actionable at all? If not, get rid of it .
• What is the concrete next action?
• Can it be done in two minutes? If yes, do it right away .

Personal Kanban

Personal Kanban is an adoption of the Kanban method for your per-
sonal use . You basically visualise all your work on the board, limit the
work in progress and focus on the tasks you have chosen . I really like
having a Personal Kanban board in our kitchen at home, although it
is more of a family Kanban there .

Pomodoro technique

The pomodoro technique is, as you can guess, my favourite . It takes
a “pomodoro” as a unit of work . Pomodoro is Italian for tomato and
the technique’s name is inspired by tomato-shaped kitchen timers .

The technique consists – among other things – of five steps:

1 . Plan your work: What will you do today? What is your focus during
the next pomodoro?

2 . Start the pomodoro, for example by setting a kitchen timer to 25
minutes .

3 . Work on a single task you planned until the pomodoro (25 minutes)
is over .

4 . Mark an uninterrupted pomodoro with an X .
5 . Take a break (5 minutes after every pomodoro and 20 minutes after

4 pomodoros) .

40

The pomodoro technique helps your brain to be as efficient as pos-
sible:

• By marking a pomodoro as done you get a reward for your work .
Every 25 minutes!

• Having a break every now and then allows your brain to take a step
back and probably come up with new ideas .

• A break also helps you get out of a flow, in which you probably no
longer see the whole picture .

• Having a rhythm frees your brain from the need to structure your
time .

• By handling interruptions actively, you gain more capacity to focus
on your work .

• With the mindset of “having some time at your disposal” instead
of “having to fight against the time” you have a positive attitude
towards time .

The first thing I noticed after applying the pomodoro technique was
that I was more relaxed after work . Only at second glance did I also no-
tice that I was more focused during the work . This is mainly because
of the different way in which I handle interruptions when using this
technique . Internal interruptions like other tasks coming to my mind
during work are just written to the work log – and can be forgotten
again . External interruptions like phone calls, emails or colleagues
coming to your desk need a different approach . The easy part is all
the electronic stuff: switch off Outlook notifications, put your chat to
“not available” and your turn smartphone to silent mode – and voilà,
you will not be interrupted by these means during your pomodoro .
But do not forget to check your email and phone in the next break!
Handling working with colleagues is more difficult in this regard: I
think collaboration is so important that I generally do not consider a
colleague coming to my desk to be an interruption . But at times when
I really want to focus on my pomodoro, rescheduling the conversation

41

usually works fine. I just say: “I’ll be with you in 10 minutes”, make a
note and then keep my promise .

It doesn’t matter whether you choose an existing personal time man-
agement technique, combine aspects of them or come up with some-
thing completely different yourself . I just think it is important that
you find a way how to stay focused.

By Christian Abegg

Links:

42

Why you need to go visual

This article is about why you should sketch more in your daily work
and why you should use the power of shapes and colours in your
documentation . Illustrations allow you to transfer knowledge in a
way that is quicker and easier to remember and help to prevent mis-
understandings . For instance, if you want to describe the shape of
Switzerland in words, you will probably need hundreds of words . The
same information in the form of an illustration can be processed by
our brain in less than a second and it would still be more precise than
the description .

Our brain handles pictures very well

The ability to see and recognise patterns and movement is millions of
years old and has improved over time through evolution . Our ances-
tors’ lives were hugely dependent on it . Writing is a human construct
for recording spoken words and is only a few thousand years old .
This means that our brain handles pictures much faster than text .
In addition, it is also more fun to look at and study pictures than to
read text . As an example, let’s take an IKEA manual of how to build
a wardrobe . The illustration-based manual is more effective than a
text-based description could ever be .

43

Easier to understand Easier to map
to the real world

Easier to prevent errors

Less effort to study the
pictures than to read
a description . There-
fore, it‘s much more
likely that people will
understand the picture
manual .

Easier to map the man-
ual to the real world . E .g .
which screw has to be
used .

Easier to prevent errors .
E.g. the picture clarifies
which screw to use . It‘s
less likely that some-
one will use the wrong
screw .

Illustrations in software development

The architecture of software is not that different from the architecture
of a wardrobe or another piece of furniture . Both consist of a lot of
smaller parts where each small part has to fulfil its purpose. That’s
why if you use illustrations in your software documentation, each of
the advantages from the table in the previous chapter will apply as
well . The difference between software architecture and a piece of fur-
niture is that the software architecture is more complex . It has more
layers and different life cycle states . Depending on what you want to
describe, you will need a different kind of illustration . The following
table shows some of the most common diagrams used in software
development documentation .

44

Use case model Activity diagram

Sequence diagram Class diagram

Component diagram Deployment diagram

45

Sketch to understand

If you work on a software development project, you will probably face
complex problems on a daily basis . Some common ones are: concur-
rency issues, async data flow, evolutionary architecture, communi-
cation to other applications or how to implement a specific part of the
business logic . Sketches can help you to understand and solve many
of these issues . Let’s take an example . You’re a software engineer and
have to implement a part of the business logic . A service that creates
an overview of all your bank accounts and their credit . The require-
ment for the transformation will probably be a list of rules, including
how to handle different currencies and their exchange rates . Draw-
ing a workflow diagram and having it on paper in front of you will
help you to understand the data flow and the connection between
the rules. It will help you to simplify your workflow diagram. Maybe
some conditions are already included in other ones and can be pruned
away. Or you can simplify the workflow by changing the order in
which the rules are applied. Manual sketches are first and foremost
for you . They should help you to understand a part of your software .
So don’t be afraid of making a mistake and crossing out part of your
sketch . In comparison to a modelling tool, manual sketching is often
much faster and gives you a higher degree of freedom . Your sketches
can also be used for the system documentation . However, if you are
illustrating the architecture of a piece of software that is still evolv-
ing, it is recommended to use a tool . This is because it’s much easier
to adapt your illustration to new changes .

46

Conclusion

Visualising your work can save you time and energy and sharpen your
thoughts . All you need to do is to grab a pen and paper . Try to sketch
more often during your daily work . And next time you have to explain
your system architecture to a new team member, sketch it .

By Gabriel Duss

47

“You are not a software engineer” –
What am I then?

The job of software engineer, or any technical role for that matter, is
extensive . You might spend more time than you would like on meet-
ings, you might spend your afternoon sending emails to your stake-
holders, you might actually only get to write code for a couple of hours
a day . Depending on your personality type, this can make you thrilled
or make you unhappy . I am writing this for the latter . In this article,
I offer a different view, in which our job is solving business problems
and making our customers happy, while coding is only a marginal
tool in this context . I have perhaps hit a nerve with this one, but this
mindset is even more important when working as a service provider .
So please take a moment to listen .

“But I am a coder,
I don’t want to deal with any of this.”

Yes, I understand and I am too . Coding is fun, coding challenges us,
coding is the reason most of us embarked on this journey . But, if you
think about it, code is made primarily for human consumption . Yes,
machines need to understand it as well, but if it wasn’t for the people,
we would still write in assembly, or binaries even . When you throw
in daily collaboration with your team, managers, and clients, your
job is really about dealing with people, not computers .

Let me put it this way . You may put in the work and produce 10,000
lines of the cleanest, most optimised code there possibly is . But if it
doesn’t bring value to the business, you might as well throw it away .

48

What is your drive?

You don’t want to just play around and not produce anything of worth
to someone, I hope .

According to recent models of motivation (“Drive” by Daniel Pink), our
actions are fuelled by autonomy, mastery, and purpose .

In healthy working environments, autonomy is easy . You have the
power to decide how to implement the solution, to choose the way of
working that enables you to do this, and to influence decisions.

Mastery is the urge to improve your skill set and be proud of all the
work you have done . This motivates us . To change projects, gather
new experiences and work with new technologies. Since the field of
IT is a fast-moving freight train, I assume you are already doing this .

Purpose can be tricky, though . The desire to do something that is of
meaning and importance, greater than ourselves . Maybe helping an
already successful enterprise earn 5% net profit more than in the pre-
vious year is not your thing. Maybe you want to help humanity find
the cure for cancer . Boarding on some ideas is easy, while for others
it is not . I will not provide an answer to this . It is entirely up to you .
I will give you a hint though . It is everywhere . It involves feelings .

“I am in the business of creating value.”

If your code fails to bring value, whose fault is that?

Remember the cost of fixing a bug, depending on the stage of the
software development lifecycle . An hour spent in requirements en-
gineering will save you many more down the road . You might use a

49

framework designed to prevent this from happening, prescribing you
the points in time when you should do requirements engineering . But,
all the magical frameworks in the world will not help you if you don’t
understand what you are building .

“I am in the business of satisfying customers.”

If you consider yourself to be a one-man business, your customer is
every person you interact with . Your customers are your team mem-
bers, management, stakeholders, users . Keeping them happy is of
importance for your business, even if you need to make a couple of
trade-offs . Sometimes, you might feel disconnected from the cus-
tomer . Either he is really busy and doesn’t come by, or you see him
perhaps once, at a release review . Establishing that link creates a fer-
tile ground for collaboration . Having it is your right, and responsibility .

Anybody can code

After all, we live in a world where anybody can code .

“Have you heard? The other supplier was X times cheaper”.

All over the world, you can find coders capable of writing code. And
doing it cheaply!

Why would the customer choose you, over another provider?

“We use sound design principles, and our architecture is flawless!”

Yes, kudos for that, you should really maintain that . Selling your work
like that totally makes sense – if all your customers are engineers .

50

To others, that doesn’t mean much . The fact that we are proud of our
work is not a good selling point – considering the end result is the
same: working software .

Own the market

As competing on price is not an option, we might just have a few other
tricks up our sleeve . If the customer enjoys working with you because
you communicate more clearly, you understand his business and you
are actively helping him in making better decisions for his business;
these are the skills that make a difference .

By Stefan Djelekar

PART II:
PEOPLE

53

“As long as you live under my roof,
you’ll do as I say” –
If the project manager leads
differently than I would

Here are three observed stories relating to how to deal with personal
conflicts within projects.

A colleague of mine moved from working solely with Zühlke people
to a project team with members from several service providers . After
a few days, he complained that the way of working and the approach
in his new project was completely different compared to what he was
used to when working with Zühlke teams . He was worried that this
approach would not result in a successful project .

Another colleague switched from several Zühlke-led projects to an-
other project in which he was the only Zühlke employee . After one
month, during which procedures in the project seemed to change
arbitrarily on a daily basis and with non-existent internal commu-
nication, he was frustrated and wanted to leave the project .

I joined and assisted this project team during a transitional period of
2 months . After just a few days, it became clear to me that I would
not be able to work efficiently in this project, because the leadership
and communication were very different to how I would have set up
and managed the project .

These are three real examples from my close environment and three
times the question is: Is it bad just because it is different and how do
I best deal with these “differences” ?

54

To use the words of Henry Ford, I see three ways regarding how to act:
“Love it, leave it, or change it”

The most gallant way to deal with the situation is to simply accept it .
Which means not only accepting but also trying to understand and
then support the way of working, as well as perhaps adopting a dif-
ferent mindset and changing your own behaviour so that it is more
aligned with that of the other members of the project . The advantage
with this approach is that it causes little friction within the project .
But the most important aspect in my opinion is that it gives you the
opportunity to try different ways of working and new approaches, and
the possibility to learn and increase your personal level of growth, as
you find yourself on a new path that you would maybe never have
chosen yourself, and can thus gain further experience . A key point
from my point of view is that you should remain true to yourself and
show your integrity at all times .

If the situation changes in a way that means you are no longer able to
deal with it, it won’t help to just talk about it in a negative way . Then it
is time for a change . Change starts with each one of us making small
compromises . The way we share or ask for information, talk to each
other, act in meetings and support team members or maintain our
network . By enforcing change, you have the possibility to bring the
project to the next level of maturity . But there is also a certain risk
that you force a change that is not appropriate just because you are
used to working in that way . And you have to keep in mind that most
people are not enthusiastic about hearing someone questioning their
way of working and insisting that they change something themselves .
In the worst case, they may try to make the situation worse for you
than before, by reducing your involvement and so on . You need to be
prepared for such outcomes . Therefore, I suggest handling people with
care and involving them in the flow of change, by showing them what
they can gain and why they will benefit from the change.

55

You may have tried to adapt to your team’s way of working but then
discovered that you are still dissatisfied. And you may have tried to
change the way things are done, but instead of finding a solution that
is suitable for everyone, you simply found rejection and resistance . At
this point, the best alternative is to withdraw or to at least ask the line
manager for help with leaving the project . Not as an escape but as a
way of protecting you and the team, if the situation is not acceptable
and proposals are not welcome .

At the end of the day, you have to look in the mirror and decide for
yourself about the best course of action . Was the behaviour of the oth-
ers (team or project manager) fundamentally wrong or just different?
Was I too set in my ways to properly get involved in the new approach
or did I try my best to be efficient in the project? Were my suggestions
for change appropriate or did I offend my colleagues rather than mo-
tivate them? All these questions can help with the decision – love,
change or leave – to be at peace with yourself . The most important
point is to take a decision, rather than just creating a negative atmos-
phere in the team by e .g . taking negative actions or making negative
speeches . Because a negative atmosphere is the worst thing that can
happen in a team, and will result in it losing its effectiveness .

By Sabrina Lange

56

Business readiness – is there readiness
for agile development in business?

The development departments are increasingly aligning themselves
with the agile topic . As a result, agile development is gradually be-
coming state-of-the-art . Time and again it creeps into the interface to
“Business”, as “the other” part of the company is often affectionately
called . This is because Business should be closely involved in the de-
velopment work, as a Product Owner (PO) or a Product Manager (PM à
la SAFe), in order to ensure that business value and customer benefits
remain in focus and have a high priority . So members of the develop-
ment department ask: “Is Business ready for agile?”

When tidying up my mailbox, I came across a link to a SAFe discus-
sion in 2016: Under the title “Business readiness for SAFe”, someone
asked the group for material about the benefits of agility (or SAFe)
from a high-level business perspective . The aim was to identify clear
benefits from a business perspective, rather than pure development
benefits: “Not how effective it is to have cross-functional teams, or
why Scrum is great” . Brilliantly put! Exactly, such aspects are of no
interest to Business . So what did the group have to offer as answers?
Curiously, I read on .

And I was rewarded with a wonderful response from a member of the
forum: “Agile is much closer to how non-IT business functional areas
work . What is a ‘new way of working’ for us is how they’ve always
worked: collaboratively and in response to a constantly changing en-
vironment” . Many thanks, Janet . She provides the example of a legal
department that does not have to write a PMO or a change request
to adapt to new regulations . “The IT community has constructed its
own cage” .

57

This is a tough but clear formulation . We old hands remember: the
project management that we now lovingly call “waterfall” had its
roots in IT or development in many companies . That was where the
first experts who knew how to systematically use the approach were
located, and from there it was conveyed to and promoted in the com-
pany, in the specialist departments, until ultimately there were busi-
ness project leaders and even pure business projects . For “scaling”,
there were various boards at the program and portfolio levels, to help
manage the interests and conflicts. IT/Development is now ridding
itself of this “corset” thanks to the “agile revolution” and is asking: is
Business ready for agility?

It does not matter to me if this assumption is actually correct . What
I like about the wording is the change of perspective: it is not about
good IT/Development against evil, unwilling specialist departments,
nor the other way around . The reason for the company environment
currently working the way it does is not (just) because it has been
prescribed that way by the specialist departments or management,
but because it has been actively shaped and cultivated in that way .
Dear readers: please remember this the next time you are irritated
with the specialist departments .

What do we learn from this? As a company, IT, Development and the
specialist departments are all in the same boat . None of them can
solve all the problems on their own – so let’s do it together! Have you
ever wondered how the specialist department works? How does it
handle decentralised decisions and transparency? What makes its
world so different from yours? Be curious! Don’t be afraid to ask .

A note from me: I came across similar topics in relation to Business
Process Management . In this context, the topic of business readiness
and change management keeps coming up . Here there are Process
Owners, who are a bit like the Scrum Master, as well as the conflict

58

between process and line organisation, with which we are also fa-
miliar in project management in Development .

I have been building bridges between IT/Development and Business for
20 years . The distance between them remains, as the differences in
language and visions are too great . But it is precisely these different
perspectives that provide enrichment and help us move forwards .
Remain curious . Help those who try to build bridges . Agility, SAFe
and Lean will not be sufficient on their own, as they simply provide
a modified way of building bridges. Ultimately, people have to work
together and communicate with each other for the company to suc-
ceed . And, as always, respect, empathy, openness and transparency
help in this regard . And respect . And reliability . And respect . But that
was the same in Waterfall times as it is in Scrum times .

Remain curious!

By Ina Paschen

59

CYA: Cover your ass

Imagine on a Monday morning you come into the office, start up your
computer and ba-bam a manager is standing beside you, telling you
to follow him into a escalation meeting .

There is a problem with the software you are building in production .
In the meeting there is the CIO, your line manager, the technology
line manager, the operation line manager, the central architect line
manager and you .

There is a problem with a library you introduced into your software a
year ago, which is causing crashes of the software in production and
the company is losing money because the users cannot work .

The managers want to know why you have chosen to use this library
and who gave you the sign off to use this library . There are now two
possibilities:

A) You start like hmmmm, this was a year ago and hmmm, actually
I don’t know, but this is not of interest now, let me go and fix the
problem … very bad idea! You’re screwed…

B) You take the laptop and navigate to the list of architecture deci-
sions, you show them the architecture decision with the evalu-
ation and the approval . And now you say: “Can you excuse me? I
have a problem to fix.”

Of course: All characters and events in this article are entirely fic-
tional ;-) .

I know you hate to document things and I know that you think you
will remember everything . But just take my advice for your career .

60

Use CYA = Cover your ass . CYA has one simple rule: Document EVERY
Decision => DED

Yes, document every decision . Whether you are a Software Architect,
Business Analyst, Consultant, Engineer, Developer, Manager or a fluffy
unicorn dancing on a rainbow .

So, how do you document a decision?

You create a decision log in a tabular form in a suitable medium (Git,
wiki, SharePoint, Word, Excel, …) .

Number: Every Decision has an id or number . Which can be used as
a reference .

What: What is the decision that was taken

Why: The reasoning and arguments, constraints, implications and
references .

• Context: In this part, we document the context of the decision . We
give the reader some extra information, so he/she can understand
the context of the decision .

• Problem: The problem or the challenge giving rise to this decision .
• Decision: The decision that is made . Document the evaluation you

have done that has led to this decision here .
• Consequences: The consequences of the decision .

When: When was the decision taken?

Who: Who was involved in taking this decision? Hint: The more people
who agreed on a decision the better .

61

No. What Why When Who

D-1 We will
use a deci-
sion log in
our project

Context:
• Decisions need to be doc-

umented so that everyone
knows why a decision was
made .

Problem:
• Not everyone remembers

after more than a year
why a decision was made .

• Knowledge drain: People
leave the project

Decision:
• We introduce a decision

log .
Consequences:
• Every decision is docu-

mented in the decision log

01 .01 .2020 Hans Muster
Simon Stucki

What happens if a decision is revoked? Strikethrough the decision
and define a new decision, where you document why decision No. X
was revoked .

CYA = Cover your ass will make your life easy and everybody in your
team will know where to look to see why a decision was taken, so
that you can move on to the next project without being haunted by
unknown old decisions from the past .

By Romano Roth

62

Digitalization and its impact on
customer interaction

What are the core principles of digitalization?

There is no doubt that we all are in the middle of a digital transfor-
mation . For most companies it is clear that they are affected in some
way by digitalization . However, it is less clear to them HOW they are
affected and WHAT they should do to prepare for the challenges of
the future .

It all began with the launch of the Internet and then seemed to slow
down after the dot-com bubble . But, in 2007, it really started with the
launch of the iPhone, when it became obvious that computer power
had reached pocket size and that “having information at your finger-
tips” was the new state of the art .

But what exactly has changed? And are there common patterns of
digitalization in all the different industries and business areas? What
should a company do to remain competitive in the new digital age?

It is important to understand the core principles of digitalization in
order to align the actual business with the future:

1. Global availability and tradability of digital services
and products

We notice many small changes in our daily life, but easily overlook
the dramatic changes as a whole: telephone booths have vanished
in just a few years; CD shops have disappeared from the high street;
kiosks are transforming from paper magazine sellers into digital

63

 accessories shops; cinemas are fighting for survival as customers can
stream formats without latency and enjoy films wherever they are
and whenever they want; advertisements are appearing more and
more frequently between our online news bulletins, but disappearing
from newspapers (which themselves have a tendency to disappear);
augmented reality warns us of traffic jams right when they are hap-
pening and interactive street maps with GPS positioning have replaced
paper street maps . When you try to think of what types of product
you no longer need because you now have them on your mobile, you
might struggle to write down the first 20 things, but then you will
hardly be able to stop writing .

Even more important is the fact that these digital products are glob-
ally tradable and almost immediately available . You just download a
book when you first hear about it and seconds later you can read it. A
train ticket from Zurich to Stuttgart can be bought in Switzerland or
in Germany and you will probably buy it wherever it is faster, cheaper,
easier or more convenient to do so .

Today’s customers on service websites don’t complain very often, but
they appreciate a good and friendly service . They want to receive im-
mediate, but personal service and publicly rate the service provider
and the user experience on the internet . When a family member was
given incorrect medical treatment and struggled to get hold of the
doctor, I made the treatment public and, suddenly, we were astonished
to discover how easy it was to find a mutually beneficial solution with
the hospital, under the condition that the rating would disappear as
soon as corrective measures were taken by the hospital . Multilingual
trading platforms link sellers and buyers, and much of the traffic on
those platforms is made up of electronic online transactions . And if
a service is down, customers might change to a different platform
within seconds and without hesitation – maybe never to come back
again . We realize that, in our digital world, we can lose our clients

64

before we have even met them for the first time. Never have processes
been more critically important than today when it comes to satisfying
customers!

2. Vertical and horizontal integration among customers,
partners and suppliers

Customers, partners and suppliers are often in the same commer-
cial network to profit from “just-in-time” advantages. There are new
ecosystems and platforms evolving that offer advantages in logistics
(such as cross-docking synergies, delivery services, billing and dun-
ning services and even factoring services) . Automation makes it possi-
ble to serve millions of global customers digitally, in an easy, friendly
and personal manner . Sometimes it just makes sense for the customer
to get everything from one source and resellers are frequently no
longer required for digitalized goods . Global sellers like Amazon and
Apple have learnt to address end users effectively . Some companies
realize only too late that they are about to fall out of the process or
get into a new dependency because their customer relations are not
aligned with their digitalization requirements . Only companies that
are focused on the needs and values of their customers will make the
change and be prepared to stay independent and act strong .

3. The value of a constant data stream for digital services

The data streams that result not only from customer interaction,
transactions and enquiries but also from registered customer hab-
its have become a major source of income and research alike . Not
only is Google, for example, able to design customer profiles, but it
can also constantly improve its search algorhithms . This allows it
to constantly improve its position in comparison to its competitors

65

(that are still trying catch up with their Google search ranking) . The
advertising market depends on this kind of information in order to
optimally personalize the way they address customers . Companies
with good access to customers, such as Facebook, Google and Ama-
zon, can innovate new intelligent products based on this data . And,
last but not least, the servicing of products can improve if valuable
data is available . This data stream is an extremely valuable asset and
companies cannot afford to do without it .

There are some products, such as harvesting machines for farmers,
that people tend to assume, being heavy machines, will always re-
main purely physical . But the data stream relating to those physical
products can lead to new kinds of after-sales services .

John Deere has videos that illustrate the benefits of digitalization for
farmers in connection with IOT concepts . This data might addition-
ally be used for predictive maintenance or might be enhanced with
IOT concepts and could enable a whole new type of return for the
value chain . The data stream is a competitive advantage that helps
with the designing of new digital services, especially in evolving
domains .

4. The value of data streams for the physical world

However, digital information might not just be used for digital ex-
tension of the service range: While I was writing this article, Ama-
zon announced that it would also use its digital information about
physical products in order to optimize physical book stores . At Ama-
zon’s six physical stores, books are arranged on shelves face out, even
though this takes up more space . Amazon is not trying to cram the
entire inventory into these stores; its view is that you can just order
everything else from your phone . It also devotes a lot of space to its

66

Kindle e-readers, streaming TV devices and other gadgets, so you can
try them out before buying .

What is the takeaway for companies that are
affected by digitalization?

First of all, digitalization is particularly beneficial for platforms that
link buyers and sellers in the same ecosystem . If done well, other
companies might want to profit from your excellent relationship with
your customers. In the long run, it might be more profitable to own
and run such an ecosystem than to operate a traditional business .

It is of paramount importance that you put the customers at the centre
of all your thoughts . Try to surprise them and provide good feedback
facilities in order to constantly learn about customers’ needs and con-
cerns. In order to achieve this, processes are no longer sufficient, as
they rarely reach beyond the company itself . What you need today are
user experience mapping tools that enable you to assess how custom-
ers feel about the products and services they receive .

Design the customer interactions from the outside to the inside:
Increase the understanding of how (real) customers interact with
providers, then design and speed up the interactions from an en-
d2end perspective by eliminating media gaps and by increasing data
quality .

Embrace technical advances for the benefit of your customers. New
technologies often bring opportunities to improve products or services .
The 5th generation mobile services started in 2018, with the first calls,
and will be broadly introduced in 2020 . They will eliminate the latency
from connections, so that cars being driven in traffic can interact
in real time and optimize security on the streets . Have you already

67

evaluated how this could also change the just-in-time concepts of
your production?

And, last but not least, challenge your business models . Even though
your business model has worked so far, it might be possible to add
additional value streams, with additional business models or with
combined models . A good starting point for this might be Oliver Grass-
mann’s book “The Business Model Navigator: 55 Models That Will Rev-
olutionise Your Business” .

By Beat Bischof

68

Discipline flow

Product conception, development and delivery is a highly interdiscipli-
nary team endeavour . Anybody who has ever participated in a more or
less complete product lifecycle knows that not only are the languages
each discipline uses quite different, but also the results each discipline
obtains may not always be compatible in the manner intended .

The discipline flow tackles this by relating the engineering disciplines
to one another in a general product lifecycle context . Its core use case
is to get a comprehensive overview of the disciplines and flows re-
quired for product conception, development and delivery – from user
needs to business goals to the product as delivered by operations to
the final user.

The basic model

The very first step of any kind of meaningful product development
must take the user as well as the business goals into account and,
by this means, allow for continuous delivery of product increments .
Relationships between the Business (BUS), Customer Experience (CX),
User Experience (UX), Requirements (REQ), Architecture (ARCH), Im-
plementation (IMPL) and Operations (OPS) define the basic flow model
to achieve this .

69

The various disciplines concentrate on discipline-specific essentials:

• BUS: Business, organisational and societal goals for the given pro-
duct(s)

• CX: Customer’s overall journey
• UX: User and his goals
• REQ: Product features and acceptance criteria
• ARCH: Quality attributes and architecture
• IMPL: Components and connectors
• OPS: Infrastructure and monitoring

Additionally, one might think of testing (TST) as a discipline on its own,
for instance between IMPL and OPS or OPS and the delivered product .
In some project contexts this would make perfect sense; however, in

70

general, we’d prefer to think of testing as an activity that is integrated
within each discipline . For instance, in BUS we may think about how
to test the business model hypothesis, as part of UX we may think
about how to do the user acceptance testing and in ARCH the testing
for quality attributes is paramount . Of course, all this needs general
testing knowledge as a foundation and this is where testing as a dis-
cipline might play an explicit role in your project again .

The different disciplines are grouped into three major parts, each with
a different focus on what has to be achieved: (1) Understand what is
needed (2) Develop what is needed (3) Deliver what is needed . These
three quite different perspectives also provide clues as to the charac-
teristics and attributes needed in your team .

We then monitor the performance and usage of what was delivered,
incorporate feedback and start again in order to develop correspond-
ing improvements and extensions .

Discipline experts

The disciplines and relationships described above form the core ele-
ments of an abstract product delivery machinery . However, the ma-
chinery is only the basic structure . It needs to be implemented by
people who are experts in their disciplines . At the same time, they
must have general knowledge of all other disciplines in order to be
able to always put specific work into the context of the overall product
lifecycle . Only then may we avoid silos and waterfall-like delivery
processes .

The more directly the disciplines are related, the more this knowl-
edge is required . For instance, working on the architecture requires
a solid understanding of all the requirements, both the functional

71

requirements and the requirements for quality attributes . And in the
downstream flow we need a thorough understanding of which infra-
structure is needed for effective operations . This holds true not only
for production, but also for development and test environments .

Project excellence

We need people working together as a team, often facilitated by some-
body in the team taking care of collaboration topics such as estab-
lishing and customizing an agile process, enabling appropriate levels
of self-organisation while also considering individual personal de-
velopment goals . At Zühlke, this is typically done by a collaboration
owner (CO), elsewhere this might be a Scrum Master . Additionally
somebody taking care of project budget and risk is needed within
the team . Typically, this is done by a team member from the project
management domain .

Neither the collaboration owner nor the project manager (PM), are
part of the sketch above, since both roles are often more concerned
with the complete flow and not so much with discipline-specifics
directly, at least in their roles as CO and PM . The PM, of course, often
also considers the ROI of the product in relation to the project’s budget
and hence is part of the BUS discipline . Similarly, the CO might be part
of a particular discipline. More importantly from the flow perspec-
tive, both roles together ensure that not only are features delivered,
but they are also delivered on time and in budget, with appropriate
quality, by a team that sees their purpose individually as well as at
the level of the product development as a whole .

72

Successful products

Even if we have achieved project excellence, this does not ensure that
we have delivered a successful product . These require additionally that
user and business needs and goals are explicitly taken into account
from early on . We need to develop and deliver incrementally and in-
corporate feedback and learning continuously . Each discipline has its
specific contribution:

• BUS: models with statements about value and impact
• CX: overarching product(s) delivery and experience concept
• UX: statements about product value and specific concepts for user

needs
• REQ: concrete requirements and metrics for the product develop-

ment
• ARCH: feasible technical context for development and production
• IMPL: adaptable, maintainable and operatable implementation of

what is needed
• OPS: concrete environments, pipelines and monitoring for develop-

ment and production

One key aspect in the achievement of product excellence is to track
and monitor product features (or increments) as they make their way
through the complete cyclical flow in order to learn and improve con-
tinuously within and from each discipline . That is all the way from
CX/UX to delivery in production systems, including the tracking and
monitoring of the product’s usage and business performance .

73

Conclusion

In general, the discipline flow makes the big picture of disciplines
and their relationships a first class citizen and makes it possible to
explain what we sometimes call ‘Operational Excellence’ . This kind
of excellence is a result of discipline experts working together within
a lean project organisation for product delivery that focuses on user
and market needs from the very beginning. The flow comprises only
a small number of disciplines and relationships, simple enough to
sketch ad-hoc whenever needed for discussions and complete enough
to check the continuous delivery maturity in the context of your cur-
rent project .

By Stephan Janisch

74

Don’t teach kids programming

Programming is increasingly being introduced to primary schools .
This is an initiative that is recognized all around the world – many
kids are being taught programming .

Stop! We’re wrong! Do not teach children programming!

The assumption is wrong . What we are doing is observing the present
and noticing the rising trend of the need for developers . We extrapo-
late this fact and base the future on it, assuming that the same rules
will apply in 10 or 20 years from now, at the time our children become
old enough to work .

If there is something we do not know, it is what the future holds
for the world . The dynamics of change in the digital industry are so
extensive that there is no pattern which can be applied to them . The
amount of information is multiplying; requirements change faster
than ever . The truth is that we have no idea what the world will look
like in 20 years . In such an environment, programming is, unfor-
tunately, not a “joker” wildcard that will give our heirs a chance to
master the world of the future .

Moreover, the type of programming the IT market is looking for is
mercilessly monotonous and stumbling . It is all about the skill; pro-
gramming today has been reduced to being more about the frame-
work timing, and less about the science . Do we really want to involve
children in such an anaemic world of programming?

Programming should not have a meaning in itself . Programming
should be a tool – in fact, only one of the tools that will be avail-
able to people . The technical knowledge which we boast of and so

75

 passionately wish to put into young brains should not be taken as the
primary source of knowledge .

Instead, we need to teach children critical thinking . In a world with-
out censorship, but with fake news, a critical attitude is more impor-
tant than programming patterns .

We need to teach children communication . A world in which everyone
has a voice and an opinion about everything requires precise and clear
communication skills and the ability to exchange ideas and thoughts .

We have to teach children to work together . In a world where there
are more screens than people, cooperation becomes a necessary in-
gredient of progress .

And finally, we have to teach children creativity. Creativity is a part
of what it means to be human . Creativity is something we need to
constantly stimulate, now more than ever before, because that is the
only way our children will discover how the world of tomorrow will
function . Do not teach children programming . Teach them that they
can and should change the present – that is going to be our future .

By Igor Spasić

76

From enthusiasm to
commercial success

Throughout history, the goal of every human has changed . At the be-
ginning, the sole goal was to survive . With the evolution of mankind,
a large percentage of people could work regularly without worrying
about survival . Today, our work is not only the source of our income .
We want to feel that we are contributing and that we matter . We want
our ideas developed . To achieve this, there are various important fac-
tors that we need to understand .

In this article, I will provide some hints taken from my personal ex-
perience and the experience of my co-workers . These hints can be
summarized as follows:

• know your limits
• do it now
• know your priorities
• know your audience
• be ready for failure

Literally everything is achievable . But there is also a price you need to
pay to succeed in achieving it . Behind this slogan, there is more than
just a motivational message . It also means that it is not only about
the effort you put in, but also about how much time and resources
you devote to it . And, you should not spend 100% of your day working,
because a private life is important for your happiness and can signif-
icantly improve the quality of your work .

You should not postpone the start of your journey until “the time is
right” . The time will never be right . As a matter of fact, it will never

77

be “more right” than now . So, if you want to make something big, the
sooner you start, the better .

What you should also have in mind is that it is not only about putting
in enough effort . You need to thoroughly divide and plan your work
by knowing your priorities . You can base your decisions on something
like the 80/20 rule . If you plan and prioritize your work properly, 20
percent of your work will give you 80 percent of the value . Of course,
these numbers are not exact, but they can show that the majority
of the value is delivered by the initial effort you put into something .

No matter in which area you are working, you should know who your
main target group is . Imagine you have created a teleportation ma-
chine . If your product can only transport individual particles of dust,
no one is going to be interested in that . Additionally, the outcome of
your work must be beneficial for the majority of your target audience.
So, if your teleportation machine could transport humans, but only
from your living room to your kitchen, you would impress many peo-
ple, but nobody would use your masterpiece .

One of the things that is hardest to accept is the fact that you should
be prepared for failure . All the points mentioned above will help you .
But, whatever you do, there is no silver bullet for success . You will just
have to repeat a try-fail sequence until you finally succeed.

All these points are applicable when you are creating a product . But
would they be applicable when exploring a new area, let’s say, a new
technology? The answer is simple . If you cannot show the result of
your work, you will not convince anyone that you are knowledge-
able in the area you have explored . To do that, you need to create
something that gets people’s attention and that shows the benefits
of your work .

78

I would like to give an example by sharing my personal success story .
In Zuhlke, we have focus groups . These are groups of people that are
interested in a particular area and are putting an effort into exploring
it . Some time ago, we started a focus group which explored augmented
and virtual reality . We did some investigation and gained the neces-
sary knowledge, but we realized that this was not enough . To show
other people our capabilities, we decided to create an app that would
give us visibility . We analysed the market and noticed that there were
many different shared whiteboard applications, each of them lacking
tactile feeling . So, that was our goal . While working on this app, we
felt that we were contributing to the world and really cared about this
product. The first version we implemented was not even close to final.
But it was enough to show that it can be done and that we knew how
to do it . Eventually, we were heard and, after some time, we got the
commercial project .

There are many other similar examples within our company . What
is common to most of them is that they came about as a result of
different focus groups . Thanks to these groups, our engineers gained
expertise in many different areas . This was helpful for both the com-
pany and the engineers themselves . That is why companies should
be willing to give some space to their engineers to develop their own
ideas .

A journey to success is not a straight line . There is almost no chance
that you will simply think of something, make some effort and suc-
ceed . However, you can make it easier if you invest your time not only
into implementation work, but also into the aspects mentioned above .
They might seem less important, but they can significantly reduce
your effort and increase your chances of success .

By Bojan Jelaca

79

Know-how transfer – just explaining
once is not enough

Most projects face situations where knowledge needs to be transferred
from one person to another . Integrating new team members quickly,
with an effective and efficient know-how transfer, minimizes delays
and transition costs – you can react flexibly to changing requirements
and ideally specialists can contribute to several projects . How can
you ensure that nothing of importance is being lost even in complex
projects?

Everything, as fast as possible

The expression “know-how transfer” suggests that knowledge can
easily be handed over to another person . But it is not that simple:

• Often knowledge is only available implicitly and distributed over
several people .

• The time to hand over information and the capacity to adopt it is
limited .

• Knowing something does not automatically mean it is understood
or can be applied .

How should you organize a handover then?

Set priorities

First and foremost: set priorities . It is an illusion to expect that all
knowledge can be entirely transferred . Therefore, a better strategy
is to ensure that all central topics are well covered . And remember,

80

priorities depend on the perspective: perhaps the knowledge recipi-
ent has a different mission? Surely the recipient is the one that needs
to work with the new knowledge and the one handing over is often
no longer available after the transfer . Hence the handover process
should always be led by the receiver, who therefore needs to know
their goals .

It is a legitimate concern that entire topics may be overlooked when
following this approach . To avoid large gaps, be sure to start with a
high-level overview in order to understand the bigger context . Knowl-
edge maps and user story mapping can be useful tools to support this
process .

Documentation

If good documentation is available, the handover can be simplified to
providing an introduction and overview of the documentation as well
as explanations for undocumented topics . It is crucial, however, that
the documentation is trusted and up-to-date . As a minimal structure,
on-boarding checklists have proved helpful . These should not just take
the form of a list of technical setup tasks, nor that of comprehensive
documentation, but should rather consist of a map of the most impor-
tant topics and where to find documentation. They should be small
enough to manage so that they do not become outdated as quickly as
(yet another) documentation .

Apply what you have learnt

Documentation provides explicit knowledge – a conscious effort to pre-
serve and make available knowledge about a topic. Much more diffi-
cult to share is implicit knowledge, acquired from years of experience .

81

For instance, knowing with whom to consult about various topics as
the result of past interactions with persons within a network .

Typically, the absence of implicit knowledge is first noticed once it is
needed – when the “real work” begins . An effective method to ensure
that you have the required knowledge is to work under the supervi-
sion of the knowledge giver . In software development projects, this
could include fixing bugs, implementing new features, creating and
executing tests or deployment of the application . To quote Benjamin
Franklin:

Tell me and I forget. Teach me and I may remember. Involve me
and I will learn.

Doing practical work in the acquired codebase will immediately reveal
the knowledge gaps which need to be filled. More importantly, knowl-
edge learnt is more likely to endure if it is a result of practical work .

Continuous know-how transfer

Even if no employee exchange is planned, it is good practice to share
knowledge within the team:

• Exchange sessions covering important topics in order to increase
awareness within the team

• A group chat tool with good search functionality to simplify infor-
mal exchange, especially within distributed teams

• Methodologies with short feedback loops to foster exchange within
the team

The above measures will help to avoid knowledge silos and, at the
same time, lessen the impact when a team member leaves .

82

Check the success

As a knowledge receiver, make sure you understand what you receive .
The transfer of knowledge is not a one-way street; ask questions and
try to apply what you have learnt . A simple and very effective check
to see if you have really got the point is to give a short summary of
the topic to outsiders . And give some thought to the next joiner: offer
feedback on how the on-boarding process can be optimized .

Without such checks, you might grasp a passive understanding of the
topic without acquiring the ability to apply it in practice .

Hopefully, these suggestions will help ensure that your next project
change is successful .

By Christoph Zuber

83

Lean startup: taming the uncertainty

Have you ever been involved in a project with an unclear vision?
Maybe a project where the stakeholders disagree about who the prod-
uct’s main users will be? Or a project with a long list of “must-have”
features but no agreement on how to prioritize them?

The next time this happens, try the Lean startup methodology to tame
your project’s uncertainty . Some of its principles are:

• treat everything you believe as an assumption that needs to be
tested

• build the smallest possible product increments and use them to get
market feedback

• build up your knowledge through many quick iterations of the
build-measure-learn cycle

• fail early and then change course based on what you have learnt .

Classic examples:

• Zappos; started not by creating an online store for shoes, but by
taking photos of shoes in retail stores and putting them on a static
website . The founder processed orders by hand . Goal: learning what
customers want from an online shoe retailer .

• You are thinking of creating a newsletter . Instead of hiring a news-
letter team, just add a sign-up form on your website. Define be-
forehand how many sign-ups you want before you actually start
producing the newsletter .

“Yeah, nice!” you say . “It’s for start-up founders, just as I expected
from the name . So why should I use this method in my development or
consulting project?”

84

Here’s why:

All projects have to cope with uncertainty . It’s highest at the outset, but
it never goes away . That’s why we employ agile methods . Lean Startup
is useful because it helps you decide what to do next under conditions
of uncertainty: everything is an assumption until you validate it . Find
the assumption that carries the biggest risk for your project, then look
for the simplest experiment to prove or disprove it .

Do you understand the business model of the product or service you
are helping to build? Who are its customers? Which of the customers’
problems will the product solve? What is its Unique Value Proposition
and how is it going to be implemented (the solution)? To answer these
questions, spend one hour with your team to fill in a Lean Canvas – a
one-page business model consisting of nine segments . It requires you
to spell out all your assumptions about the product and supports a
shared understanding of what you’re trying to build .

A Lean Canvas can have additional benefits:

• The customer segments point at personas to look into during UX
research

• The Unique Value Proposition will make discussions with stake-
holders and users more purposeful

• The solution can be a starting point for determining the project’s
scope and technology

• Prioritizing the risks on the canvas might get your risk analysis off
to a flying start

With the Lean Canvas filled out, a first shot at the business model
is right in front of you . Now tackle the uncertainty by conducting
experiments that challenge the assumptions that carry the biggest
risk . Typically, those are the customer segments and the problem

85

to be solved . Two very simple experiments are problem and solution
interviews as described by Ash Maurya in “Running Lean” . Use them
to derive a deep understanding of your customers’ problems and to
design and validate a solution that fits their needs.

A problem interview is fairly easy to conduct . Identify some potential
customers or “prospects” that are willing to discuss your idea for an
hour . Tell your prospect a story that highlights the three most im-
portant problems your product or service will attempt to solve . Ask
the prospect to rank those problems . Then, ask them how they ad-
dress each of the problems today . At this point, most people will tell
you their story . Just sit back, listen and learn about their world view .
To deepen your understanding, ask open-ended follow-up questions
and, of course, take notes about everything you hear and observe .
This procedure will provide you with a wealth of information about
your customers’ real needs, thereby reducing the uncertainty in your
project . Use the insights to update your Lean Canvas . If the problems
have been validated, quickly create a demo to test with your pros-
pects in a solution interview . The demo should be lightweight, easy
to change and look realistic . Demonstrate to your prospects how your
solution will address each of the problems validated previously and
ask whether they would use it . Again, sit back, listen and learn . If the
prospects respond positively to your demo, test your pricing by telling
them what the real price will be .

Performing these steps together with the team does not take much
time, but it does a great deal towards taming the uncertainty inherent
in your project .

86

Further reading:
• Eric Ries – The Lean Startup
• Ash Mauria – Running Lean
• Niklas Mådig & Per Åhlström – This is Lean

By Eric Fehse, Sven Bünte, Stefan Reichert

87

Meeting with users is essential
for creating great products

Even though – as a UX professional – I must stress the importance of
meeting users, I have to admit that the title of this article is not ex-
actly accurate and just meeting users is not really the point . Having
revealed this, I should probably explain what really matters and give
some indication regarding how to do it .

The purpose of meeting users

Challenge #1: We who develop a technical system are not like the users.

This has two key reasons: (1) The more we are involved in the devel-
opment, the more elaborate is our mental model about the system
and how the system is meant to be used . (2) Even if we are users, we
are just some of them . There are usually many more users with quite
different needs and mental models .

Conclusion #1: the more we rely on our own evaluation of the product we
are creating, the more likely the product is going to suck

Things are even more interesting . What users really need changes
constantly . And it is most vexing for some of us – for others it is a
fantastic opportunity – that we who create technical systems drive
change . Introducing new possibilities changes what people are doing,
how they are doing it, what they trying to achieve and thus what they
expect from the technology we provide .

Challenge #2: a new product changes what people need from a product.

88

The better we can anticipate the change, the better our products will
meet the future needs . And to anticipate a change we have just one
option: we must create the solution, either as a mock or even as a
product, and let users use it as realistically as possible . From this,
we can learn what the future could hold . By the way, people can get
quite creative and do stuff nobody ever thought of doing with our
products . If we can harness this creative power, our products will rock
the market . The key is to be one step ahead of the users . While they
adapt to the new technology, you observe them, create new ideas and
start the next cycle .

Conclusion: the purpose of meeting users is to learn what tomorrow
will be.

How to meet with users

Get inspired by life

Usually, meeting with users starts with life as of today . Go and ob-
serve people, talk with them about what they are doing, why, what
they love and what they hate . You can also become an apprentice
and do it yourself, instructed by a master . Identify their tasks, their
values and beliefs, what they try to achieve and what hinders them .
The goal: Gain understanding of users and their context, identify and
test possible stories .

Things to be aware of:

It’s a learning process . So, steer your progress with open questions,
analyse each session immediately and rework your open questions
for the next session .

89

Participants will give you numerous solutions . Listen and learn what
they really wanted to achieve, see the problem and get creative to find
an even better solution .

You need a wide range of opinions so pick a wide variety of partici-
pants .

The essence of the problem lies in the daily hassles . Thus, you should
experience real work, dreams and everyday life . Avoid talking about
generalisations .

Capture the details as direct quotes, and collect pictures, materials
and forms that people are using . This material will later allow you to
quickly create prototypes that can handle real life problems .

You need to consolidate what you learn from several participants: a
big wall and sticky notes do the trick .

Be sensitive to commonalities and differences between the different
persons you talked to and work them out . There is no average user .

As a result of such activities, you can expect to have much deeper
knowledge about users, their life, their work and their dreams, as well
as loads of ideas about how to achieve a dream or two .

Evolve the product story

A product story answers the very fundamental questions of the prod-
uct. Alas, just filling out a lean canvas and an idea sheet is not good
enough . We must probe the users and get some more substantial ev-
idence. Is the problem relevant? Does the solution fit? Is it the best
possible solution? There are a range of method frameworks like design
thinking, design sprint, user experience sketching, contextual design,

90

lean startup and more to help you . Whatever the name, they all basi-
cally describe building a team that iteratively creates and evaluates
solutions with users .

A few methods to use here for meeting users:

• UX sketches, physical mock-ups and paper prototypes
• Narratives, storyboards
• MvPs and test implementations .
• Hallway testing, UX walkthroughs
• Wizard of Oz testing
• UX questionnaires, metrics and benchmarks
• Empathy maps, response cards

There are also techniques to co-create solutions together with selected
users, making the feedback loop even faster . In a typical co-creation
session, the team chooses one aspect of the solution, creates simple
building blocks and lets a group of users work with them . This needs
an example: To equip a police car, designers created cardboard mod-
els of the equipment to go into the car . They then took an old police
car, their cardboard models and asked a couple of officers to place
the equipment so it would be best . By doing this, they learned a lot
about placement options, constraints, real world issues and elements
of police life .

Things to be aware of:

Business analysts, market researchers, UX professionals all talk to
the users and collect information but with a different focus . They
reach different conclusions and there will be trouble if these do not
align well .

Get really creative with how you create prototypes and test them .

91

Prototypes should make it possible to experience the future life with
the product and they should be quick and cheap to build .

Try many solutions, your first idea will not always be the right one.

Evaluate the solution in comparison to relevant problems . Avoid let-
ting users explore a prototype on their own or by using artificial tasks.
Invest in creating realistic tasks and scenarios . Ideally, users should
bring their own work and try to perform it with your prototype .

While doing this, you can expect the story to get clearer and more re-
fined. You also learn a lot about the users, their lives, their work and
their dreams, and get numerous ideas relating to the product concept .

Nail the concept

Once you really start developing the product, you will want to define
a few fundamental cornerstones of the solution: information archi-
tecture, key elements of the visual design, error handling approaches
and more . And you will want to test this with users .

Methods that help with meeting with users include

• Scenarios, visual scenarios
• Wireframes, lofi prototyping
• User/usability walkthroughs, hallway testing
• UX questionnaires and benchmarks
• Empathy maps, response cards
• Participatory design workshops, card sorting

Things to be aware of:

You cannot create a product concept without going into details . Take a

92

few interesting key examples (key path scenarios) that require design
and create the concept based on these .

Visual design is just like a nice sugar icing on a cake . It sells but a bad
cake stays a bad cake . Thus, don't do pixel perfect . Use hand-drawn
sketches and wireframes to elaborate the concept . You get a better
cake faster .

Try the hallway to get quick initial feedback . Just put your draft
sketches on the wall, grab anyone available and let them give you
feedback .

The first solution is usually not the best solution. Try different ap-
proaches and involve others .

Again, realistic tasks or tasks that people bring with them are what
you want to evaluate .

From these activities, you can expect to identify the architecture of
the user interface . You will also learn a lot about users, about your
story and you will discover numerous requirements and details of
the product .

Work out the details and fine-tune your solution

Whenever you need to implement a user story, you will also need to
work out the details regarding exactly what to do and how this piece
fits into the overall product that has been developed so far. Welcome
user input again here . Some methods that help when meeting users:

• Hifi prototyping, lofi prototyping
• Hallway testing, user/usability walkthrough

93

• Usability testing & usability lab
• Business walkthroughs, pilot installations
• Life A/B testing
• UX questionnaires and benchmarks
• Empathy maps, response cards

Things to be aware of:

When working out the details of a user story, start with the real needs
and try to identify the simple solution . Avoid implementing wire-
frames that a UX professional created alone in his cubicle or require-
ments a BA wrote after listening to a stakeholder . Work as a team:
what does the user want to achieve in this story and what is the best
way of achieving this, and what should you therefore build .

Fine-tuning the product as a result of a story will also require changes
being made to things that are already done and ready .

Let users use the system once a user story has been implemented .
Provide a test system so you can measure parameters and obtain
feedback .

Setup a simple usability lab if you need to optimise specific aspects.
Users can work undisturbed here and video recordings allow you to
analyse the details of the interaction .

Not every function has the same importance or difficulty. Test and
optimise only what really needs to be optimised .

Don't let users be the first to test. Take a real life story and play it
through yourself .

94

Who should meet with users?

Very simple answer: the team . Not the BA, not the RE, not the PO,
not the UX person . You cannot delegate the responsibility for "Great
Product" to one person . If the team does not have a sound common
understanding of what is really important for users, those with little
understanding will introduce small glitches and big blunders . Prac-
tical solutions need some compromises and UX skills are excellent
assets in a team . But even if UX persons have the most exposure to
users, do not let them have the sole contact . Always include other
members of the team .

Options on how to get to users

Getting to users can be quite difficult. Here are a few ideas (including
how not to meet users and still call it user-centric):

Simulate users, i .e . do it yourself and put on a user's shoes . Ok, not
really users but at least you try to look through users' glasses .

Replace users with anybody over the hallway . Still not real users but
at least people who are not experts on the system and will point out
issues to which you have become blind .

Replace users with people who know the users: Trainers, retailers,
support, service engineers and similar . Even though they are not us-
ers, they may have good insights about users .

Hold informal meetings and use your network to reach users . An easy
way of getting access to users for a short session . A network is obvi-
ously needed .

95

Hitch-hike on field trips somebody else is doing (e.g. a service engi-
neer, sales people)

Go to a place where you are likely to find users and get people to talk
to you .

Go up the hierarchy to request users for a session .

Request users as members of your team for 30% to 50% of their time .
Make sure that these users are still doing their normal job so they
don't unlearn being users . Preferably experienced and expert users
rather than novices .

Establish a user pool that you can use for sessions . Be aware that these
users are usually locals and do not represent the whole world .

Use recruiting companies to organise "users" from their pool . Needs a
precise profile describing what you require.

Open up your development to the general public and let users join the
discussion .

Install your development team right next to your users, so you can
just walk over and talk to them . There is no better way .

Need a final word?

Here it is, adapted from Google: Focus the team on meeting with users
and everything else follows .

By Markus Flückiger

96

Some inconvenient truths about
the digitalization of your business

Many companies today want to use digitalization to develop com-
pletely new – ideally disruptive – business models . In most cases,
they intend to complement their product-related core business with
"digital value-added services" . In this article I summarize some incon-
venient truths that I have come across time and again . Let yourself
be demsytified, so that you can start the adventure of digitalization
with realistic expectations . Let's start with a basic realization – the
first of eight uncomfortable truths:

1. You are not disruptive with your digitalization
strategy, but only part of a herd.

I know it sounds tough, but it's true: All managing directors today
want the Internet of Things and Data Analytics . Everyone wants a
platform and talks about Minimum Viable Products . All of them de-
mand "fail fast!" from their teams and have conducted design-think-
ing training courses . Smaller companies create "Digital Business In-
novation" jobs, while larger ones build up entire incubators and make
the obligatory detour to Silicon Valley. That's fine. But, unlike a few
years ago, such measures are already mainstream today . It is right
and important to deal intensively with these topics . Initially, however,
you will not achieve more than the competition . But if you face the
uncomfortable truth, chances are good that you will be more success-
ful than the herd .

When it comes to digitalization, I also perceive an over-enthusiasm
to adopt new methods . But beaware:

97

2. There is no such thing as a silver bullet
to realize radically new ideas.

Unfortunately, one need is repeatedly expressed: "You told us about
Design Thinking, Lean Startup and Scrum . We've heard all that before .
Don't you have a new method we don't know yet?" Here I must loudly
shout "Stop!" . It is not important to use a method that no one else has .
A structured approach is important and sensible, but the team com-
position, top management support and a positive failure culture are
much more critical to success . Many managers long for new, life-sav-
ing methods because they feel the following uncomfortable truth:

3. It is much more challenging to use agile
and lean startup methods than it sounds.

Agility and Lean Startup sound like casual and fun ways to work . This
gives the impression that anyone who is sufficiently motivated and
trained in a hip method can work this way . Unfortunately, these meth-
ods are anything but easy to implement and, firstly, require a great deal
of discipline on the part of all parties involved, including the thorough
formulation and validation of hypotheses . Secondly, fundamentally
different leadership styles and a corresponding culture are needed .

Let́ s take the popular business model canvas as another example: It
is both a curse and a blessing of the canvas principle that every team
can fill out a business model canvas in a 60-minute brainstorming
session and go home with the good feeling of having done something
cool . After all, you always have a result . I claim that 98% of business
model canvases end here and are therefore no more than a nice fin-
ger exercise, because the laborious work is just beginning: deriving
hypotheses, formulating tests, arranging appointments with users,
validating hypotheses, iterating the canvas, etc . This takes a lot of

98

time, ties up resources and is usually quickly lost in the urgent daily
business of the team members .

One reason why the complex validation of the hypotheses is often
skipped could be the following problem:

4. You do not know your customers
as well as you think you do.

When a manufacturer wants to digitalize its business, it is almost
always a question of developing digital value-added services around
the product . If you want to offer your customers valuable (i .e . paid)
services, you need to know both the small and the large problems your
customers have every day in the context of using your product . How-
ever, this is a completely different type of knowledge from that which
you previously needed for the development and distribution of your
products . There are many treacherous "unknown unknowns" here,
i .e . you don't even know what you don't know about your customers .
And, until now, you didn't even need to know because things like mul-
ti-level sales or tendering standards around the "product view" were
enough . Suddenly, however, the focus is on a service view, networking
and new "customer touchpoints" .

Suitable methods for this include Design Thinking for idea generation
and the User-Centred Design Process for implementation . But what is
much easier and what everyone should do is to just drive out for a day
with the service technician . You will learn more about your custom-
ers than you can in all the training and study courses put together .
That’s a promise .

Understanding your customers' needs in the context of digitalization
is a challenge for your entire organization, from development, product

99

management and sales to service . But that is not all, because the fol-
lowing is unfortunately also true:

5. Digitalization does not fit
into your existing organization chart.

Digitalization projects always bring with them the great challenge
of being inherently cross-cutting . This makes the execution of digi-
talization projects very demanding, tough and time-consuming . At
the same time, the "immune system of the company" prevents truly
radical new ideas from emerging in the company – or it ensures that
these ideas are increasingly watered down in the implementation
process, so that in the end not much that is really new or even rad-
ical remains .

If you are aware of these tendencies in your company, then the next
truth may even give you a sense of relief:

6. Disruptive business models of the calibre of
Uber and Airbnb do not come from Europe.

Many industrial companies would like to have a big hit in their in-
dustry . No wonder, because in every management lecture the usual
suspects from the consumer world are cited as models of disruption .
But it is no coincidence that the biggest ideas come from Silicon Val-
ley, because nowhere else in the world are so many innovation driv-
ers concentrated: the deeply rooted and serious claim to improve the
world (for example, Google only tackles problems that affect at least
one billion people); the availability of venture capital and the willing-
ness to invest enormous sums; the quest for "moonshot projects" (Elon
Musk: "I want to die on Mars ."); the openness to exchange ideas and

100

accept failures; the density of top research institutions; the tolerant
lifestyle in the most beautiful surroundings and much more .

Only rarely does a disruption worthy of the name come from another
continent . Can you think of an example? The strengths in Germany
and Switzerland, for example, lie elsewhere: in quality, thoroughness,
safety and longevity – to name but a few .

The following truth may explain why the United States, with its pi-
oneering and discovering tradition, is more successful than anyone
else:

7. New business models are not designed,
they are discovered.

Most companies expect a clearly defined path to success in the digi-
talization process . But there is no such thing . Look at how your com-
pany has come to the business models of today. You'll find in more
than two-thirds of cases that the founders had originally started with
something completely different and only gradually discovered and
satisfied the needs of the customers which today make up their core
business .

Typically, this observation also applies to digitalization projects: You
start at one point with a (supposedly) good idea and then go out to the
customer – to learn what he or she really needs . The goal from the
outset must therefore be to discover the customer’s real problems and
realise that your company can make a significant contribution to their
solution . This is the core of the "Lean Startup" approach .

The question arises as to how digitalization projects can nevertheless
become a business case . It is often the case with monetization because:

101

8. Companies cannot grasp the
business models of digitalization
in their existing business logic.

Companies know that digitalization will fundamentally change their
business . However, they still want to display the result in their con-
ventional business logic . Crazy, isn't it? This is only possible with an
incremental innovation in which there is experience from the past
and assured expectations for the future . Then, for example, a ROI can
be calculated quite reliably .

At the core of digitalization, however, are two completely different
things: data and the customer interface . Both cannot easily be mon-
etized via the industry's existing sales channels . The success factors
are rather the development and use of multi-faceted markets, the
realization of network effects as well as fast scaling and large reach .
Digitalization creates the basis for new business models that are not
yet foreseeable . The appetite comes while eating, so to speak, and the
best ideas come from working together with third parties .

What do we do with these findings?

First: Don’t digitalize your business . Instead build a new digital busi-
ness . See the difference?

If you digitalize your business, you are a) cementing the status quo
and b) most likely not making use of the full potential of working
digital . Working digitally allows you to totally rethink your business,
the products and services you offer, the way you win, interact with
and keep customers and who you do business with . Here are some
tips on what you need to increase your chances of success:

102

• The deep-rooted conviction among top management that digitaliza-
tion makes new paths possible and necessary – and the willingness
to go down these paths with courage .

• Interdisciplinary teams that are free to break new ground, with
enough freedom and distance from day-to-day business, and to
make mistakes in the process .

• The motivation to identify customer problems before thinking
in terms of solutions . Usually it is not ideas that are lacking, but
well-understood customer problems .

• The ability to learn openly and together with customers and part-
ners what each party’s individual path to digitalization looks like
for their own added value .

• A positive error culture and the agility to quickly and iteratively
move from the initial solution idea to a viable business model –
before the project runs out of money .

By Moritz Gomm

103

Team fit

“The human race is filled with passion. And medicine, law, busi-
ness, engineering, these are noble pursuits and necessary to sus-
tain life. But poetry, beauty, romance, love, these are what we
stay alive for.” John Keating (Robin Williams), Dead Poets Society

Science tends to measure and quantify things . By making them con-
crete, tangible, it sets itself boundaries . But passion breaks them .
That’s why they work so well together and why they can’t “be” with-
out each other . For engineers to perform in a manner that is beyond
ordinary, an organization must provide a system that will foster the
passion . That system is culture .

Culture is a group phenomenon . It manifests itself through shared
values and behaviours and is experienced through the norms and
expectations of a group . When in harmony with personal traits, it
provides an environment that empowers people to perform at their
best . A degree of that harmony is called team fit .

Software engineering is a highly collaborative process . From the time
when work to create software is begun, in the discovery phase, until
its retirement, we’re in constant contact with various stakeholders .
Furthermore, as we take on more responsibility, collaboration become
more important .

Software is everywhere . Professional services take us to diverse in-
dustry sectors . Creating a solution that will meet the end-user's ex-
pectations, requires us to really understand the business, regardless
of the role .

To work, contribute and progress in such systems, we need to be

104

equipped with competencies that go beyond the technical . For that
we need to look at the domain of emotional and social intelligence .
The former provides us with skills to execute the task, while the latter
enables us to take it through the process efficiently.

So, what is it, exactly, that we are looking for? This is a question I
put to colleagues . After several individual and group discussions, we
came to a consensus on a list of eight competencies, all of which are
perceived as crucial in certain contexts:

• Approachability: a prerequisite for collaboration to happen is that
you feel comfortable to approach your colleague no matter if you
bring bad or good news .

• Accountability: they may rely on you . Once you have come to an
agreement with your team mates, and the work is shared, they
should be able to trust you to complete your tasks in the agreed
time frame and quality .

• Integrity: may your actions be at one with your values, principles
and beliefs, in every context . People of integrity always do the right
thing . They are honest and feel comfortable admitting when they
don’t know something . They are open to different opinions and
always welcome feedback .

• Empathy: only if you are honestly concerned about and understand
the feelings and perspective of others, will you be able to establish
a mutual bond . That bond is fundamental for establishing a feel-
ing of psychological safety in the team – the foundation for every
high-performance team .

• Adaptability: we live in a world of diversity . People we work with
come from different cultures, have different opinions and profes-
sional/educational backgrounds . Projects we work on are from dif-
ferent industries run by various technologies . As an integral part of
these processes, we absorb, analyse and assimilate a huge amount
of information and emotions . We adapt .

105

• Proactiveness: in a time of innovations, products should not only be
designed in response to impulses from the market in real-time, but
one should also try to predict such impulses and act ahead of time .
Engineers follow that rhythm and, assisted by proven practices,
methodologies and the right technology choices, make this a reality .

• Courage: it takes courage to challenge the status quo and leave one's
comfort zone. Those are the first two steps on the way forward – on
the road between opportunity and success .

• Endurance: good things take time . Just try to remember how many
things that made an impact, or of which you’re proud, took a short
time to happen .

You may ask yourself if it is realistic to expect someone to possess all
these competencies . In my experience, it is . The difference being only
which of these are closer to the surface .

By Marko Simić

106

The evangelist and the chameleon

Imagine this quite common situation: somebody, let's call her Andrea,
works in a team that uses a particular tool that isn't Andrea's favour-
ite . Andrea has a choice: she can either react according to her (probably
unconscious) preference, or she can choose her reaction based on what
she wants to achieve . Here is one way of looking at her possibilities:

Possibility 1: the whiner

Andrea will complain continuously about the tool she is forced to use .
It is slow and a particular bug leads to undesired behaviour at least
daily . And anyway, this tool is simply not as good as her favourite tool .
Even after years, Andrea complains about the same problems . She has
neither learnt how the tool works nor found any of the workarounds
her teammates use nor taken any steps to replace the tool .

The whiner tries to convince others that her preferences are the best,
but she doesn’t take any steps to actually switch to her preferred tool .

The advantage of the whiner is short-lived: It is a good way to find
out whether others dislike the same tool and (if you listen closely)
whether there are any reasons why this tool might be the right one
for the situation .

The disadvantages are that whiners are annoying and there’s the risk
that people stop listening to Andrea even when discussing unrelated
topics .

107

Possibility 2: the evangelist

Whoever wants to listen (and everyone else, too) will hear contin-
uously about all the advantages of Andrea’s favourite tool . She does
everything she can to have as many people as possible switch to her
favourite tool, even if there are good reasons why, up to now, some-
thing else was in use .

The big challenge of evangelists is that they usually don’t know the
alternatives . This means that Andrea sounds more like “I don’t want
to learn about this tool” than like “I know something better” . In the
worst case, the functionality she points out as the biggest advantage
has been implemented in an improved way in the very alternative
she wants to replace .

The advantage of the evangelist is that many migrations need the
tenacity of an evangelist . Without evangelists, we would still use the
tools from the last century .

The disadvantage is that Andrea might overlook a far more important
issue or a precondition for the migration .

Possibility 3: the tightrope walker

Where possible, Andrea uses her preferred tool . Whether she adheres
to the team’s conventions or not is a balancing act:

• if your environment differs too much from everybody else’s, pair
programming will become more difficult.

• most companies have rules about what can be installed/used . Be-
cause Andrea most likely doesn’t know the reasoning for each of
these rules, she has to consider carefully which rules she breaks .

108

• A tool you know well and that is configured to fit your preferences
can increase your productivity and reduce your frustration .

The difference between a tightrope walker and an evangelist is that
the tightrope walker focuses on her own productivity and comfort .
She doesn’t attempt to convince anybody, but simply uses whatever
she prefers (as long as she believes that it is OK within the context) .

The advantage of the tightrope walker is that her focus is not on a
specific tool. This gives Andrea the freedom to look at the big picture
and focus on the most important issues .

The disadvantage is that Andrea might miss an opportunity to im-
prove the situation of the whole team .

Possibility 4: the chameleon

Even though Andrea has her preferred tools, she can work with many
other tools. She adapts her way of working to fit the tool in use and
continues to learn about each tool she uses . Given her experience with
various tools, she can choose the tool that best fits the problem at
hand, regardless of her personal preferences .

Like the whiner, the chameleon does not attempt to change anything .
But the motivation is completely different: For the chameleon, the
choice of the tool is far less important than many other things . The
chameleon neither attempts to convince anybody nor takes any action
to change the situation . This is not due to resignation, but because the
chameleon adapts and is happy with many tools .

109

The advantages and disadvantages of the chameleon are the same as
for the tightrope walker, with the added advantage that the chame-
leon has more experience with a broad range of tools .

It’s your choice

Each possibility has strengths and weaknesses that may or may not
fit your situation. So choose wisely: what’s your intended impact? And
which possibility matches your impact best?

No matter whether you work as a team member, as a consultant or in
a management position: don’t let your unconscious preferences rule
your actions . Instead, adapt your behaviour to the requirements of
the situation and continuously ask yourself: which of the possibilities
above is the best to achieve my goals? Does my behaviour match my
chosen possibility?

By Franziska Meyer

110

The evolution of support
and operations team setups

Every software development project approaches go-live readiness
at some point during the software development and enters the live
phase. Actual end users start benefiting from implemented features
and the sponsor gets the return on their investment . However, the
phase before and after go-live can be intense . Aspects around the
operational readiness, as well as organizational and procedural con-
siderations regarding future support and operations are then at the
heart of discussions .

There are many supporting factors that can lead to a project’s success
in this phase . One key good practice from our projects is to involve
colleagues with experience in support and operations early on in the
process . A service manager can provide valuable input during the bid
phase in terms of release and incident management . And a DevOps
Engineer can set up a CI/CD pipeline at the start . Such measures en-
sure a smooth, high-quality release to production .

However, when a software development project approaches the live
phase, the team in charge undergoes a shift in focus and setup . In
the following, we present a set of collaboration models for teams that
are transitioning from initial software delivery to continued delivery
with support and operations .

111

Fixed developer

One or many developers may be exclusively assigned to support and
operations activities. The benefit of this approach is that there is no ca-
pacity impact for ongoing development – as the fixed developer(s) are
not participating in that . Also, it ensures that there is always a respon-
sible team member available to respond to support and operations
topics . However, this advantage comes along with a huge downside
in terms of knowledge transfer . As the developer is not participating
in ongoing development, supporting newly developed features in pro-
duction can prove a challenge. Consequently, the fixed developer will,
in any case, have to approach team members about issues arising in
production . This effectively leads to a capacity impact, so the upside
of this approach turns out to be questionable in practice . Furthermore,
it is usually the case that a developer is not fully allocated to a project
in this scenario . Because there are rarely enough incidents to keep

112

an expert busy 24/7, a developer is assigned to multiple projects . This
leads to cross-project planning conflicts, in particular when there are
incidents to solve at the same time in all of them . Last but not least,
this setup leads to an increased amount of context switching and will
therefore reduce the overall efficiency of any person in charge. Given
these practical implications, our conclusion is that such a scenario
only works for projects where there is no ongoing development .

Rotating developer

To mitigate the above-mentioned downsides, we experimented with
a ‘rotating developer’ setup . Here, the responsibility for support and
operations duties rotates throughout the team . The related advantages
here are threefold:

113

• Between periods of taking their turn for support and operations
duties, the developers are participating in ongoing development
and therefore possess the knowledge to support incident resolution
in production .

• Developers who fixed issues in production when it was their turn
for support and operations duties will tackle the development of
new features with a different perspective . The ‘eating your own
dog food’ effect turns out to have a positive impact on quality after
a couple of rotations .

• A developer can be allocated fully to one project, which mitigates
the negative effects of the fixed developer approach. However, this
collaboration model also has its downsides . While taking their turn
for support and operations duties, developers cannot be fully as-
signed to backlog work and, due to the hardly plannable nature of
production incidents, it can happen that even the reserved capacity
is not sufficient. In addition, this model is a challenge in situations
involving a broad spectrum of technologies . That is simply because
one single developer is rarely an expert in all areas . But, given a
less diverse technology mix, this model is well-suited to projects
with strict delivery timelines – as the rotation model introduces
appropriate planning means .

114

One Team

The motivation to continuously improve our team setups has led to
a third model. It integrates the benefits of former models and at-
tempts to mitigate two remaining downsides . As noted earlier, it is
a challenge to take over responsibility for support and operations as
a developer in projects where there is a diverse technology mix . Fur-
thermore, despite having established a lean knowledge transfer due
to rotations, there is still some overhead involved, e .g . on a handover .
We therefore started to experiment with team setups where the whole
team is continuously in charge of both ongoing development and sup-
port and operations activities – a model therefore referred to as the
‘One Team’ model . Once an incident comes in, the team decides who
is best suited to tackle the issue in terms of knowledge and capacity .
Therefore, this model is suited to projects with a diverse technology
mix. Furthermore, it significantly increases efficiency because it elim-
inates the need for handovers and it benefits from having a team that
is responsible for achieving a common goal . This team spirit releases
supportive behaviours; for instance, even if a specific team member
has taken over the task of resolving an incident in production, the

115

remainder of the team will provide more input and support than in
a scenario where this responsibility is delegated to a single person .
Furthermore, the above-mentioned ‘eating your own dog food’ effect
scales in that situation . A team that is very aware of the challenges
of any given software solution in production will take very informed
decisions regarding new features . However, this collaboration model
also has its downsides . The number of issues to resolve in production
impacts the velocity of a team and it can happen that a Sprint goal is
jeopardized . Therefore, this setup is best suited to projects in which
the priorities of delivery and maintenance can be balanced . If it is
possible, at times, to postpone the delivery of some, less crucial, new
features for the greater good of stable operations in production, then
this model is the best choice . In fact, experience shows that no other
model allows for a faster and higher quality resolution of incidents .

As you can see, the collaboration models have undergone an evolution
over time, starting from the fixed developer model as a logical and
simple setup to start with, progressing to the rotating developer model
and finishing with the One Team model as a logical conclusion: The
overall goal of each of them should be the same – sharing responsi-
bility as one team .

By Tijana Krstajic, Guido Angenendt

116

The house of the six wise men

An old saga tells the story of the different levels that have to be taken
into account when designing a new solution . It goes like this:

One day, an ambitious young shipbuilder came to the House of the
Wise Men . The queen had personally sent him . He was to learn there
how to make the most useful ships possible .

In the forecourt of the building, the shipbuilder met an old man
sweeping up leaves . The old man showed him the way to the entrance,
where he was already expected .

The shipbuilder entered the first chamber.

“Are you here to get some advice from me?”, asked the first man qui-
etly . “I can indeed give you some . The most important thing is how
useful your ship will be for your mission . Think carefully about what
you want your ship to be able to do . Does it need to have oars, in case
there is no wind? Does it need to have weapons, so that it can defend
itself? Have you given any thought to navigation? Many a ship has run
aground because it unintentionally entered shallow waters . You have
to weigh up what is especially important for you . If your ship cannot
do enough things, you will not reach your destination . If you want
too much, it will go down . Take note: The functionality determines
the usefulness .”

Deep in thought, the shipbuilder went to the second door, which
opened as he approached .

“There is nothing more important than the reliability of your ship,”
said the second wise man . “Is the hull sturdy enough, but also agile

117

and fast enough to reach your destination? Is the ship built so that it
doesn’t capsize when the waves become high? Do the masts remain
firm in a storm? What do you do when the wind tears your sails? Don’t
forget: A ship can only be useful if it is reliable and free from defects .”

The shipbuilder was still thinking as he entered the next chamber,
where the third wise man was waiting for him .

“The most important aspect is your ship’s handling . If your helmsman
cannot control the ship, you will not be able to avoid obstacles . You
have to be able to set the sails and also take them down again quickly,
if the wind gets too strong . Otherwise you are doomed . My advice is:
Make sure your crew can handle the ship and the equipment before
you go to sea . Because, remember: All the technology in the world is
only useful if people can use it .”

The shipbuilder was excited in anticipation of the advice waiting for
him behind the fourth door .

“Your priority has to be sustainability,” said the fourth wise man . “Be
careful regarding from where you take your timber, otherwise one day
there will not be any good trees left . Will the tar pitch that that you need
for your planks poison your village? That would result in nobody being
left when you return . Does the yarn for your fabrics come from honest
sources? Only what pays dividends in the long term can bring real ben-
efits. You have the choice: You can be highly respected or ostracised.”

This made an impression on the young shipbuilder, as he finally went
through the fifth door.

“The greatest importance should be given to the impression your ship
makes on people. Otherwise you will not be able to find a crew that
is prepared to sail with you . Your ship has to radiate power, so that

118

pirates do not consider it easy prey . Be sure to make it graceful . Re-
member that you will spend many days and nights on the ship . It
should be a pleasure rather than a hardship to spend your time on the
ship . Pay attention to every little detail, because beauty is an impor-
tant asset . Everything that surrounds us must be appealing, because
without beauty it is of no use .”

When the young shipbuilder left the building, he again passed the old
man sweeping up leaves .

“So,” asked the old man. “Are you satisfied with the advice you have
received?”

“I’m confused,” replied the young shipbuilder. “Each of the five wise
men gave me a plausible suggestion regarding what to focus on in
order to ensure that my ship can be of the greatest possible use . So
now I’m really not sure where to start .”

“Could you give me a little bit of help to sweep the corner under this
shrubbery? I’m old and can hardly reach there,” the old man asked
him .

The young shipbuilder took the broom and started sweeping . “These
leaves get stuck . Your broom needs to have fewer, but harder bristles
to be able to sweep here . And the nice handle looks appealing, but
constantly slides out of my hand . Your broom is most likely much
better suited to cleaning a doorstep. I now understand what the first
wise man meant: It is the functionality that determines everything!”

The old man smiled . “Come back tomorrow, and we will continue
with our work .”

By Michael Richter

119

Time to say goodbye

Setting up a project in an efficient way is not an easy task. It in-
volves sharing the vision of the project, and ensuring that everyone
is aligned and has a common understanding of how the project will
be managed . It is now seen as good practice to have a kick off work-
shop, not only for an hour but for a day, with teambuilding and vision
refinements, not only once but depending on the project duration at
regular intervals .

But how things look at the end of the project? Is everyone aware of
how long they will be involved in the project? What are the tasks when
the project is coming to an end? When is the last working day? What
will happen with the project deliverables after project closing? Who
is going to ensure operational startup, when and how?

The following often occur:

• Ops and Support became involved too late or not in an efficient way
due to time constrains or other reasons . They have therefore not
been enabled to take over tasks and responsibility .

• The transfer to operational mode is not proceeding because the pro-
ject team is still receiving new requests and trying to handle these .

• People are happy to be contacted and needed, because there might
be a certain kind of uncertainty in terms of how things are going
and how much longer we will be involved in the project . Every
change brings a certain kind of insecurity .

• Most often, knowledge transfer and handover do not take place, but
resentment due to unclear responsibilities takes over .

• Sometimes the project manager simply says there is no more work
and there is no information flow any longer. Project members feel
dropped, not appreciated and a degree of frustration sinks in .

120

• Something similar might also happen if project members are as-
signed to a new project and expectations are not aligned between
the project members, and the former and new project managers .

• And, last but not least, a completely different aspect: people get frus-
trated because of all the experiences gained from a project, as they
realise that the new project is making exactly the same mistakes
right at the beginning .

Based on these insights, I would like to give you 6 suggestions regard-
ing what can be done to reduce or avoid the previously mentioned
situations .

1 . Get operations and support involved as soon as possible .
With this I do not mean just invite them to the team meeting,
but also ask them what their expectations about the project are
and what they need in order to take over responsibility at the
end of the project . Ask them for document reviews and involve
them as testers . Create informal documentation of all issues
and decisions taken as the basis for further reference and a
handbook .

2. Give the transition phase a name, and define, plan and commu-
nicate this phase .
Just like the development needing to be planned in advance,
the transition also needs to be planned in advance. Official
communication that this phase will now start and what the
achievements of this phase will be help all the involved people
and provide some kind of orientation .

3. Redefine roles, responsibilities and meetings in the team and com-
municate the results .
With the new phase and activities, responsibilities will change .
Maybe a business analyst will no longer be responsible for just

121

requirements but also for training, and the support provided
by a support team or a test manager will no longer be needed .
Some tasks will be taken on by operations and no longer per-
formed by the project team itself. Therefore, a new definition
of roles and responsibilities in the team is crucial, as well as
communication of the new assignments . Team meetings or
defect meetings may no longer be required . Therefore, meetings
to discuss existing production issues, progress within training
sessions or performance and usage statistics are more rele-
vant . From my perspective, it is better to discontinue previous
meeting series and setup new meetings with new agenda and
participants instead of reusing old ones, as this ensures an
 official shift.

4 . Establish contact with the team members and their superiors .
Sometimes team members are ‘lured away’ to switch to another
project . This is obviously not always the case but as a project
manager I recommend discussing with the superiors by when
the team member will leave the current project and to what
extent the person will work in the new project or can take on
new tasks outside the current project . This agreement should
be made between the superior, project manager(s) and team
member in order to ensure that they all have the same view of
the situation .

5 . No project without any learning elements .
Invite all the team members to a lessons learned meeting . En-
sure that the meeting will either be split into separate ones if
there are too many people involved for a common retro to be
held, or get someone to help you conduct the lessons learned
workshop . The workshop could be organised as a “world café” .
Good practice is to make the project stages visible by putting
cards on the wall for each month and each event during the

122

project duration, making collages or writing a story/poem . As a
source of information, you can use the monthly status reports
or your project diary . You will be amazed about what things
took place (and you about which you have already forgotten)
and what you and the team achieved . One important point for
me is that at the end of the meeting every single participant
has the possibility to write down his/her own lessons learned
and take these notes with them into the next project . Maybe
you can prepare some cards beforehand and hand them out
as a template that they can fill in. You can also ask your team
members either for feedback about your performance or if they
want you to provide them with feedback about themselves . In
order to ensure you are prepared for these activities, it is help-
ful to write a project diary and note some keywords each week
regarding what happened, what was good, what was bad, what
was learned and also, using your private project diary, what
happened to all the team members, so that you can see their
development along the way .

6. “Goodbye and thank you for the fish”.
Project managers often forget to allocate some budget for cele-
brating project success or having a small give away as a “Thank
you” to the project members . Regardless of whether or not you
have any budget for this, it is a good habit to invite your team
members in advance to a project closing meeting . The purpose
of this meeting is to officially hand over all responsibilities
to the operations team and relieve the project team of their
responsibilities. That is also opportunity to reflect on the past
months and perform a project review. Summarise the findings
from your lessons learned meeting and share the impressions
of that . This is the moment to say thank you . Maybe with some
personal words for each member, a card with some keywords
about what was special about the person during the project

123

duration, photos, etc . . . There are many possibilities to show
recognition without needing expensive gifts or events .

7 . As a conclusion, in my opinion a successful project closure must
be prepared already at the beginning of the development phase .
Documents should be updated with each sprint or iteration and
each learning and insight should be documented in a way that
allows it to be handed over to support and operations to en-
able them to solve issues by themselves . Writing some kind of
project diary for the whole project might also help at the end
of the project to remember what happened, what was done to
solve issues and if these were successful . Just as the project
has a planning phase at the beginning, it should also have a
transition phase when it is coming to an end . Here I dare to
make the statement that transparency provides certainty . Talk
about what’s going on and what the plans are, and involve all
the team members and stakeholders, as you (hopefully) did at
the beginning of the project .

By Sabrina Lange

124

Transitioning systems engineering
into the lean-agile world

Lean-agile has swept over and transformed software engineering during
the last decade. Despite additional hurdles when implementing lean-ag-
ile in the systems and product engineering field, the transformational
force and the benefits are comparable. Many companies have started to
adopt agile practices outside the software engineering discipline. Most
of these are at the beginning or in the midst of the transition. Zühlke
has provided consulting services for a leading global manufacturer of
laboratory equipment and consumables, with regard to transforming
the business units and 10 development competence centres worldwide to
allow the advancing of sustainable profitable growth by implementing a
lean-agile innovation process. The following article summarises experi-
ences and lessons learned from this agile transition project.

At the top management level,
agile is a means not a goal

The customer has been very successful in the past two decades in
defining quality standards in the industry and growing healthily by
pursuing geographic expansion . As is often the case, success brings
complacency and in this case insights into the real needs of different
customers and the predictability of project outcomes and timelines
needed improving . Just making the product 10% more accurate or
faster no longer created sufficient customer value. The technical lim-
its of improving product performance had been reached . Brea king
through these made the products excessively expensive and the devel-
opment effort unpredictable . Agile, with its focus on customer value,
early customer feedback cycles and delivering working prototypes
with a short cadence promised to be a suitable remedy to many of

125

the weaknesses in the organisation . Launching products that excite
customers and users in a regular and predictable tempo was required
to secure the future growth and success of the company . When tran-
sitioning to agile, we always have to steer the transformation based
on such overall goals of our customer .

To start, organisation beats process:
What’s in it for me?

The challenges that were met were as diverse as the scope and size of
the various competence centres . Writing software applications, creat-
ing complex multi-disciplinary systems and designing plastic compo-
nents to a precision of a few thousandths of a millimetre are examples
of the range of development work performed at each plant . Some R&D
competence centres have around a dozen engineers while others em-
ploy more than 60 people . At all plants, the R&D teams constitute the
technical knowledge centres of the plant and besides developing new
products they fight obsolescence in current products, evaluate and
commission new production equipment, support production, suppliers
and sales and much more . Agile poses different challenges in such a
diverse environment . It needs to be carefully worked out what agile
means for each team, how it can be implemented and what the path
from the current situation to the agile world looks like . Only when
each person involved knows their role in the agile process, is he/she
ready to discuss the details of the agile procedure and the methods .

126

Stepwise adaptation of agile thinking
and methods

As the situation regarding customer insights suggests, few of the pilot
projects introducing agile at the customer started with an established
set of requirements . They started in an explorative agile mode, where
developing the requirements, rating customer value and defining a
suitable product concept constituted the major scope . However, to start
the agile cadence with its cycle of sprints, an initial product backlog
was needed . From that, each team worked its own way down to the
team/sprint backlog that could drive the first sprints. Now the agile
sequence of ceremonies was introduced, and the duties and behaviour
of the roles became more refined. After those basics had been adopted,
more elaborate practices, such as project increment planning, were
introduced and trained . Once the product positioning and conception
was finalised, the mode of the project changed to an agile execution,
with further refining of requirements and design being conducted in
parallel .

Simplicity, adaptability and acceptance are key

Agile requirements engineering proved to be particularly challenging
in the diverse environment at the customer . Generally, the products
and systems there exhibit more and wider reaching interdependen-
cies than many software applications . Each engineering discipline
had different perceptions regarding how a set of requirements should
look like, and which the engineers had to work on during a sprint .
Concepts from the software engineering world like features, enabler
and stories were not always easy to transfer into the worlds of me-
chanics and automation . The separation of functional and non-func-
tional requirements provided little additional information or help in
designing physical parts . We therefore ended up with two levels of

127

requirements that every team could translate into its own world and
work with for planning and realisation:

Product Backlog Item: Defines the characteristics of the product for
customers, users, production, logistics and service; owned by the
Product Owner and agreed with all relevant stakeholders before im-
plementation; a complete set represents the requirements specifica-
tion (Lastenheft) of the product .

Team/Sprint Backlog Item: Split and detailed requirements and spec-
ifications ready for implementation during a sprint; owned by the
Subsystem Owner and agreed with all team members; basis for sprint
planning and execution; a complete set represents the technical speci-
fications (Pflichtenheft) of the subsystem.

That concept proved to be sufficiently agile to support the agile ca-
dence and adaptable to the needs of e .g . plastics engineering, which
necessitates a complete set of requirements before finalising the de-
sign and releasing the tool making .

Collaborative product strategy development
is a mixed blessing

Many agile pilot projects were started without an agreed product posi-
tioning and vision . Although many engineering and application team
members considered it interesting to be involved in such strategic
clarification, the ability to contribute differed widely and not every-
body could cope with the degree of uncertainty involved . However,
management accepted the low efficiency during the exploration pe-
riod and innovative approaches and product concepts regularly re-
sulted from the collective struggle to find better solutions.

128

Estimation, velocity and definition of done
remain difficult and critical for efficiency

Besides the boost in motivation that results from the involvement
and ownership of team members, the undisturbed estimation and
execution of development tasks in a short cadence during a sprint is
a main driver for increased performance in agile development . How-
ever, gauging team velocity, nailing down estimates and committing
to the completion of deliverables remained challenging leadership
exercises that needed constant attention in a cordial company culture .

Who is part of the development team?
Who works in cadence?

To focus on project development work, we stipulated that each devel-
opment team member should work at least three full days per week on
the project . That was a daring target for an organisation used to work-
ing on many projects in parallel . The support of the top management
for this helped to make continuous improvements on this subject and
to bring distraction down to a bearable, although constantly disputed
level . The handling of interfaces to other functions like production,
procurement and marketing was also challenging . In traditional
project management, those functions are involved as extended team
members and their tasks are planned and tracked on a Gantt chart .
Fully including the representatives of those functions in the agile ca-
dence of the development team is inefficient. Often, those functions
are intensively involved only during a specific period of the project. We
had to establish the awareness that organisational interfaces need to
be explicitly managed and that there are shades between being “fully
inside” and “fully outside” the project . Some organisational interfaces
e .g . launch preparation, can run in parallel with the agile cadence of
the development team, with their own (launch) team and coordinated

129

by the project increment planning and Scrum-of-Scrum mechanisms .
Tool making could be integrated into the development team during the
respective sprints. Some interfaces need to be managed specifically by
the responsible person . We continue to work on establishing practical
guidelines for the differentiated handling of interfaces that might be
less agile and rely on clearly specified inputs and outputs.

By Rolf P. Maisch

130

We are all engineers
but work quite differently:
software engineers, electronics
engineers, mechanics engineers

What are your experiences with regard to interdisciplinary develop-
ment of a product comprising software, electronics and mechanics?
I would like to share the observations I have made about interdisci-
plinary system development!

It seems that developing within just one discipline (engineering soft-
ware or electronics or mechanics) usually works quite well . But when
these disciplines need to create one product together the challenges
arise at the discipline boundaries: on the one hand, these boundaries
(and, to be more precise, where these borders are defined concerning
which function will be realized in which degree by which discipline)
offer the opportunity for innovation! On the other hand, the most
common root cause for project issues is ineffective communication
at these borders!

Interdisciplinary projects require outstanding attention at discipline
interfaces: primarily with regard to human communication!

But being aware of these boundaries is not enough . The working mode
used by each discipline is just very different because the constrictions
are very different . Some examples for a device development compris-
ing software, electronics, mechanics are (see figure 1):

Mechanical components and assemblies usually start with the final
form factor and will be detailed subsequently . Going from the concept
phase (alpha) to series development (beta) usually means a change

131

of manufacturing technology (e .g . from additive manufacturing to
plastics injection moulding) .

Electronic circuits are usually realized in or close to series technology
even in concept phase (alpha). The final form factor is usually consid-
ered only at series development (beta) .

Software usually provides end-to-end functionality at the concept
phase (alpha), maybe even with mock ups . These existing features
are extended and stabilized during the series development phase
(beta) .

Figure 1: Comparison of main drivers per discipline
during product development lifecycle

The next interesting cause of communication pitfalls are ambiguous
terms! Are you sure you are talking the same language as your col-
leagues? Check out some terms that illustrate this problem (the term
“HW” refers here to electrical and mechanical engineering):

“Iteration”
• HW: related to maturity, not cadence
• SW: cadence or repetition
• Proposal: use “sprint” instead of “iteration”

132

“Prototype”
• HW: typically a sample for verification (close to launch date of prod-

uct)
• SW: e .g . UX-prototype, proof of concept, throwaway prototype (at

the very beginning of development)
• Proposal: use a specific prototype like “verification prototype”,

“UX-prototype”, “throwaway prototype”

“Design”
• HW, SW: aesthetic design
• HW, SW: construction, plan for building

“Increment”
• HW: typically an HW “increment” refers to the next level of maturity
• SW: by definition each increment takes one sprint

“Subsystem”
• HW: logical meaning (like description of structure)
• SW: logical or implementation unit

“Integration”
• Does this mean in the functional (HW, SW) or spatial (HW) sense?
• At component (HW, SW) or system level (HW, SW)?

Talking about communication also requires thinking about the dif-
ferent types of meetings and an effective culture: pay attention to
whether the right people talk about the right topics, e .g .

Standup
• It is your responsibility to ensure that everyone attending under-

stands the (high-level) information you are providing, including
the limitations of your knowledge .

133

• Set the stage for your information: give a context (one or two sen-
tences)

• Provide specific information about the context
• Explain possible consequences
• State what you are planning to do concerning this topic
• For explaining a discipline-specific term, it is helpful to have a term

of the week slot after the standup . Make sure to also document the
term in the project glossary .

Technical sync
• Use a regular technical sync, e .g . weekly, for planning the big pic-

ture and details of the integration strategy . Discuss topics affected
by more than one discipline, make the unknown visible!

• Document and communicate your integration plan (e .g . by using
the maturity table described below)

• Include in this planning also the use of rapid prototyping means
(EE, ME) for early integrations and physical samples . These samples
provide insights and value!

• Use a continuous integration environment for the system to ensure
robust artefacts where the new unit is to be integrated

• Reconsider what has been learnt and the assumptions that have
been made when making decisions

• Further opportunities to avoid conflicts during the project lifetime
exist in identifying internal requirements such as

• Interfaces to bring up
• Development-driven interdisciplinary tasks
• Consideration of how interdisciplinary support for bug fixing might

work

There is a central communication tool that addresses the needs men-
tioned above: we call it “maturity table” . This tool is a simple, but very
effective, table describing the integration strategy with its steps and
associated samples . It develops during the project lifetime and needs

134

to be updated regularly . Typically, each insight to be generated (or
realized device sample) is described by one column, each subsystem
in one row with its required functionality and maturity (figure 2).

Figure 2: Maturity table as a central communication tool describing each
integration sample (simplified example)

This table is very valuable for discussions between the project team
and the sponsor as well . Based on functions and subsystems, it al-
lows you to trigger the necessary discussions to avoid surprises dur-
ing device development . My three most important takeaways for
you are:

The more disciplines are affected by a system, the more sprints are
necessary to generate a common understanding of the system and
the neighbouring discipline . Usually this is mission-critical .

Use a systematic approach to ensure the right people are talking about
the right topics (e .g . an adapted meeting culture and the maturity
table) .

135

Don’t assume anything, especially about other disciplines – just
talk!

By Thomas Weber

136

What’s wrong with: “I don’t write
any tests, since I am not a tester”?

“Not a tester, so what are you then?” you might ask .
Causing offence in this way is generally not helpful .
Unless you are trying to attract attention, which is what I am doing
in this article 😉

Let’s digest the situation in detail .

A friend of mine attended my Scrum Developer class and became very
enthusiastic during the “Testing” module where we talked about code
quality, testing, test-first approaches, TDD and more. Boom! After that
class he was on a mission to convince everyone that TDD is the only
way to do things .

The first day back at work he talked about improving the team and
trying TDD, and was on the receiving end of the following statement
from his colleague: “I don’t write any tests, since I am not a tester” .

I know he handled the situation quite well, but he asked me for advice .

One thing to consider is the underlying question to this, which might
be: “How do we get people to change their behaviour?” So here are my
thoughts .

Consider your own conduct first

First of all, think about how you deal with things yourself:
• Why is the practice or tool that you are suggesting any better than

the current way of doing things?

137

• Can you explain the value of the proposed change?
• Can you lead by example?
• Do you have enough patience and skills to teach others? I would try

to work on yourself before trying to change others .

Roles?

I see that a lot of people are focused on their own role, forgetting the
bigger picture of the team and the purpose of the work they are doing .
I would ask these questions:

• Are we one team that focuses on the Sprint Goal? In a Scrum context
there is no “tester”, “programmer” or “architect”, we are all profes-
sional engineers who deliver value through collaboration .

• No matter what, do we stand together and support each other?
• Are we doing whatever is necessary to deliver a usable product every

Sprint?

Done?

Colleague: “I don’t write any tests, since I am not a tester” .
Ask: “How do you know when you are done?”

What is on our Definition of Done? How can we build a usable, tested
and fully integrated product increment every Sprint? Are we doing
that already? Why not?

138

Fast, automated feedback

Tests send you a message. They send you a message now and in five
years from now . They tell you:

Is the code working as it is expected to or not?

This fast feedback is very valuable if you are working on your product,
whether changing it, fixing a bug or adding a new feature. Think of these
tests as development support . They guide your development efforts and
make sure your development doesn’t derail, allowing you to go faster . And
the additional benefit you get in the future is an answer to the question:
“Did we break something?”

Tests are an important kind of documentation

Documentation is needed, and one good way to document how soft-
ware must work are tests . I emphasize must, since written documen-
tation only documents how the software might work .

We have too often learnt that documentation can easily get out of
sync .

Quality

Quality is everyone’s responsibility in a Scrum Team . There is no QA
team in a Scrum context, which means the whole Scrum Team is
responsible for delivering high-quality software that works and is
fully tested .

Quality attributes that are important:

139

• Does it work at all?
 Huh!
• Does it work well?
• Is it deployed and usable?
 Are the users able to access it?
• Is it useful?
• Is it successful?
• Does it make the impact we wanted to achieve?
 -> Yes! Value is key

Tests are code

Are you a coder?? Yes?

Tests are code . Don’t wait for the “test automator” to test your code . It’s
more efficient if you write tests that drive your production code and
test your work. With those tests you get the benefit of fast feedback
and your code gets tested and checked on every push . Additionally,
over time, you will know that you have not broken anything and you
will be able to sleep better at night .

Still not willing to write tests?

Ask:
• How can You help?
• What can You do?

You can always get them coffee .
Show support . We are in this together .

By Peter Gfader

140

When machine learning
meets software engineering

Software engineering (SWE) and machine learning (ML) have recently
become neighbours in academics as well as in professional services .
They are so closely adjacent, indeed, that some authors dare to con-
clude that SWE and ML are simply different ways to achieve the same
result, at least within the boundaries of particularly well-defined
problems such as rule-centred functional problems, for example . The
thinking goes like this:

Software developers encode domain knowledge into explicit, execut-
able rules, such as if-then statements . ML practitioners, on the other
hand, take a sufficient number of input data examples and attach
the intended results as so-called labels . Hence: labelling is the new
programming .

Software developers compile their software artefacts to create execut-
able binaries . ML practitioners automatically adjust the thousands or
even millions of parameters of a chosen standard algorithm until that
algorithm returns the intended output for their labelled input data .
This so-called training procedure is the new compilation .

Software developers (hopefully) write a lot of tests to prove correctness
and provide a stability harness for their code . ML practitioners closely
observe key statistical properties of their input and output data .

It should be obvious from the above, though, that we intentionally ig-
nore the not so subtle differences that are still relevant if you want to
understand the whole picture . For example, machine learning cannot
(yet) be used to devise or even create attractive and effective user in-
terfaces; and rule-based systems, such as those to transcribe human

141

speech for example, can no longer catch up with the performance of
modern neural networks . So, there are differences . There is room for
both professional practices .

And to meet the modern consumer’s ever-growing appetite for smart
applications, practitioners of both fields need to unite. Unfortunately,
this sometimes turns out to be not so easy as the naive observer might
expect. Indeed, if you think back, the difficulties should not even come
as a surprise . If you are a seasoned developer, you may remember
hearing sentences like “I’m a software developer, not a database ad-
min” or “I’m a software developer, not a system operator” . If you are
new to the field, though, you may not have heard any such thing, and
the reason is probably that there is already a cure for this problem .
It’s called DevOps and it appears to be a very satisfactory common
field for all participants; that’s probably why they met there in peace.
DevOps has effectively managed to unite software engineering and
the classical related fields.

Nowadays you may hear “I’m a data scientist, not a software engi-
neer” . While that may be perfectly accurate, the need to emphasize
the fact unfortunately implies the claim: “I don’t need to care what
it takes to use my results in production” . On the other side, typical
enterprise developers faced with the need to understand, write or
simply integrate Python code find it hard to overcome their acquired
resentment towards scripting languages .

The point is that data science, being exploratory by nature, requires
an extremely expressive, interpreted language to effectively deal with
the underlying uncertainty . Python has become the most popular
language choice precisely because of its unrivalled expressiveness .
Since the problem space is mostly of a functional nature, object-ori-
ented design is rarely applied . Enterprise software development, on
the other hand, typically deals with critical applications embodying

142

 deterministic complexity . And developers need to consider the fact
that their systems need to be changed frequently, while a high-quality
level must be maintained at all times . That almost certainly mandates
a strongly typed, compiled language and some form of object-oriented
design .

So, when we now hear people saying things like “I’m a data scientist,
not a software engineer” (imagine the associated disgusted facial ex-
pression . . .), we can either wait for someone to come up with another
buzzword like DevLearn or MLDev – or rather simply remind ourselves
that we’re all on the same mission: to deliver ever better, smarter
solutions to our clients and their respective customers . By simply em-
bracing diversity in both technical choices and practices and saving a
good lump of openness and curiosity for our professional neighbours,
we software engineers and machine learning practitioners can meet
as friends and prosper!

By Wolfgang Giersche

143

Why every project
should have gardeners

Just as a gardener takes care of his plants to ensure some fruit, we
should also have people in the projects who help us to learn and de-
velop so that we can move to the next level . Unfortunately, this is not
yet common practice, so I would like to show how this could work in
our projects, by staying with the image of a gardener .

Everyone started small . Even the tallest and strongest tree started as
a seed and over time, thanks to a lot of sunlight, rainfall and good
soil, it became a deep-rooted, reliable and sturdy tree . Very much the
same also applies to us, people who are involved in project work, when
we try to do our best to make the project a success .

We work in projects as subject matter experts, as experienced project
managers or as newcomers that will need support from the team to
grow to the next level . Roles and tasks are assigned based on our ex-
perience . Experiences from former projects are our soil . We are able
to grow with new and demanding tasks, but may fail if tasks are
overwhelming. If our specific responsibility lies within our comfort
zone and things are just business as usual, we will not reach our
limits. We need challenges, such as finding new solutions and new
approaches, in order to grow . Just as a plant needs more and more
space to become bigger, we need space and the opportunity to make
our own decisions and take responsibility. We need staffing manag-
ers who see the potential of the project and also the required skills
when staffing such a project with team members. Managers that are
aware of the strengths and weaknesses of each person and if there
is a realistic possibility that they can perform well and do a great job
in the project .

144

In addition to soil, a plant also needs some kind of physical support
right at the beginning . While the roots are still not deeply anchored,
and the stem is still fragile, it is important that the plant is supported .
It is exactly like that with us when we grow in our projects . When
we have all these challenges and opportunities to grow, sometimes
we make a mistake. Sometimes we do not fulfil the expectation of
our stakeholders, do not communicate well, do not take the right
decisions, and do not act as expected . These are the moments when
we need support and orientation, when this situation takes us to our
limits . We need someone who takes care of us, helps ensure we do not
break in the storm and instead become stronger and are prepared for
the next time we face a similar situation .

Most often, we expect the project manager to support and stand up for
us, but this is not always the case . This may be because of personal
reasons or political issues such as internal – external employees . From
my perspective, it doesn’t matter which role supports me, as long as
I know right from the beginning that I can count on a person who
is going to support me . This supporting person should be one of the
project stakeholders or at least in the area affected by my activities .
It could be the PL, the sponsor, a team lead, someone from operations,
business representatives and so on . The crucial aspect is that this
person is aware of the project and what’s going on, that I am linked
and in close contact with the person, that I have open and transparent
communication with the person and that the person is a supporter
of mine . To this end, bilateral meetings can be arranged or feedback
requested .

Even if our soil is nutritious and we have support, we still need
water, heat and sunlight to grow . Only with this can we become
what we would like to be . Within a project, this means that we have
someone close to us (“the gardener”) who ensures that we deliver
on time and with the expected quality, and that we not only choose

145

the straightforward way but also try new solutions if the time and
place are right .

Looking at the easiest way and what occurs most often in projects,
people ask for help or reviews, or carry out pair programming e .g .
consult peer groups outside a project to share experiences and ask for
advice . As this is most often related to objective questions or tasks,
my experience is that people are often happy to connect to others
to improve the results of their work . In self-organising teams, team
members often transfer tasks between them when required, in order
to achieve the best match of skills and performance to the respective
elements . Maybe you have also the possibility to be supported by a
consulting coach or mentor . As an example, we had a setup in which
the junior project lead was allocated dedicated tasks and areas for
which he was responsible . Once a week, we checked the status and
deliverables, and discussed possible scenarios .

The last aspect I would like to share may be the most critical one .
All of you who have a garden with trees or roses will be aware of the
fact that sometimes you have to cut back old branches to enable the
plant to grow even more . Even if it seems as if the plant is destroyed
and will never come to life again, by the latest in the spring it will
be back again, bigger and brighter than ever before . And the same
applies to us human beings . Sometimes we need someone to tell us
we are doing the wrong thing, following old bad habits or should try
new approaches .

We may not be pleased to hear that we are not performing well, but
sometimes we have to decide to accept feedback and decide whether
to follow the advice or not . All feedback should at least lead us to think
about ourselves, even if we decide that what we did was actually ok,
and we do not need to change anything . Possible ways to grow include,
for example, asking for 360-degree feedback from team members,

146

peers and superiors . Additionally, it is of great importance to always
reflect on ourselves and on the feedback we receive. Therefore, it is
important that we know our own strengths and weakness and find
ways to further strengthen the strengths and to overcome our weak-
nesses . A personal mentor or coach can be very helpful in this regard;
also, soft skills training or professional literature can help expand
your personal horizons .

The conclusion of my recommendation is to check the staffing of the
project team right at the beginning in order to find someone to take
on this mentoring role . Not only the availability of the resources but
also if they fit for the project. Sometimes it seems to be a good idea
to have a “training on the job” setup . In this case, it is important to
ensure that there is someone within the project who has the trainer
role and to take this approach into account in the project planning
(time and budget) . At the same time, it is also the responsibility of each
and every one of us to take the opportunity to grow by looking for our
personal gardener or a growth concept as well as being prepared to
be the gardener for someone else, and thereby provide support in the
growth process .

By Sabrina Lange

147

Why you should create a paper
prototype – and how to test it with
your users

At Zühlke, we strive to work in a lean and agile way . We embrace
the uncertainty by starting with a focus on exploring and learning .
In interaction design, this can be achieved by creating, testing and
iteratively refining a paper prototype.

Why test a paper prototype?

Some of the reasons are:

1. Getting the interaction design right should be your first priority:
navigation, workflow, organisation of content and the terms used
to denote domain elements . Simple black-and-white wireframes
help you focus on these issues .

2 . Action sequences or scenarios are paramount in interaction de-
sign . Creating a paper prototype makes you think about these se-
quences . Will the user understand how to perform the next step?
And if so, how can they navigate back?

3 . A paper prototype helps you get the most relevant feedback as early
as possible . Do the users understand the navigation? Did you get
their workflow right? Guess what: sometimes you won’t have, but all
you have to do to improve your design is change some wireframes .

4. Starting with a low-fidelity prototype means there’s a natural fo-
cus on the big picture . Once the interaction basics have been vali-
dated, there will be time to fine-tune all the details of your design.

148

5 . Creating a paper prototype allows you to involve your stakeholders
in the interaction design and evaluation process . Schedule design
sessions with them . Have your stakeholders observe the user tests .
You can even change the prototype on the fly while you are testing
it!

Creating a paper prototype

Here’s the basic workflow:

1 . Select the scenarios that you would like to test .
2 . Create a set of wireframes, either directly on paper or using a tool

like Balsamiq . Make sure to include all intermediate steps in your
wireframes that a user would go through when performing the
scenarios .

3 . If one step involves adding a dialog on top of an existing page,
create a wireframe “snippet” that just shows the dialog . This also
works for other small changes on a screen .

149

4 . The result is a stack of sketched or printed screens and a collection
of snippets .

Conducting the test

Let real users of your system test the paper prototype . For a typical ear-
ly-stage paper prototyping test, five representative users are enough
to find the most important issues in your design.

Your goal during the test is to observe users performing the scenarios .
It’s very much like a regular usability test where you replace the com-
puter with a stack of paper . To prepare the test, write an instruction
sheet that asks the users to perform the tasks underlying the scenar-
ios you used for creating the wireframes .

Ideally, one person “plays the computer” and prompts the participant,
while another team member takes notes . Explain to the participant
that you’re testing the design, not them . Each time they get stuck or
fail to understand something, you uncover a problem in the interac-
tion design that needs to be fixed. Tell the participant to read the tasks
and to perform them in the specified order. Ask them to “use” the wire-
frames as if they were a real interactive user interface . Finally, ask the
participant to “think aloud”, so you can follow their thinking process .

Never explain how to use the prototype . Resist the urge to help the par-
ticipant if they’re stuck . Use this opportunity to explore their thinking
by asking “What did you expect?” or similar open questions . Only if the
participant has been unable to proceed for at least a minute or so is it OK
to point out how the task was meant to be performed in the prototype .

Take notes of everything that happens during the test . Protip: Write
each observation on a post-it note . After the test, ask the participant

150

to share any observations, opinions or suggestions and write a note
for each of them . It’s OK to discuss solution ideas at this point .

Evaluating the test

In the team, debrief each session directly after it’s finished. What were
the three main points to take away from it?

When all the sessions are done, cluster and prioritise your observa-
tions . Don’t be too formal about this – the most important issues in
your prototype will be obvious by now . Each cluster of observations
needs to be addressed in your interaction design . So now go ahead
and create the next iteration of your paper prototype . Rinse . Repeat .

By Eric Fehse, Manuel Jung

151

You DiD what?

Is it outsourcing?! Is it team sourcing?! No! It’s
distributed development!

Dive into the topic of distributed development and get all the infor-
mation needed to kick-start your project in a distributed development
setup .

1. What is it?

Distributed development is a powerful way to carry out project re-
search, development, and realisation across two or more physical
locations . The difference between outsourcing and distributed devel-
opment is that, in a DD setup, all the organisation is working together
on the same level with a common goal of realising the project .

2. How does it work?

In the DD setup, there are multiple team members distributed to at
least two locations . It’s usual for the whole team to meet at one loca-
tion where they have an opportunity to meet each other in person,
meet their clients, stakeholders and get direct contact with all the key
members of the project .

Transparency in the team is one of the most important aspects and
the key element for creating a one-team feel . All team members
should share ideas, experience, information, resources, and decisions .

Team collaboration is internet-based, which means that it uses online

152

tools for daily work such as Skype, email, Jira, Slack, Whiteboard,
Retrium, Trello etc .

Organisational tools are remote and co-located pair programming and
knowledge sharing sessions . They help to make the team’s knowledge
base stronger and boost up their confidence and mutual trust to per-
form as one team .

3. What are the main benefits?

Scalability of the team is close to limitless since it is not dependent
on one location . Finding skilled team members as the best expert for
the job is easier in DD setup since it creates access to a larger pool
of employees . In addition, it helps to keep in close proximity to the
market and the customer. Cost benefits are positively affected since
it allows a project to hire team members from other locations with
lower rates but keeping the same quality of and desired expertise
level . DD, with its distributed locations, increases competitiveness
on the global market and allows companies to meet growing market
interest . Companies have an opportunity to meet new people, travel
and exercise knowledge sharing throughout the whole organisation .
It also decouples employees and their work from their physical loca-
tion which means no location boundaries . They can work from home
or from any office (across the whole organisation). As the DD setup
is the vendor’s internal organisation process, there are no overheads
for the customer .

153

4. What are the challenges
and how to overcome them?

Language barrier – bilingual
English, as a common language of communication, is one of the best
practices for distributed development setups . But as they cover the
global market, the most common challenge is the language barrier .
This comes mainly from the customer side, which is understandable
and realistic . Simply, there are no exclusive conditions that all the
business representatives should know how to speak English . This can
be solved by using a bilingual approach for all shared resources, better
planning and facilitating meetings where there are participants that
use different languages for communication .

Different time zones – time management
A DD setup can also work with different time zones . Time planning
and management is important, so the team can use the time over-
laps in the best possible way as the project progresses . This should be
considered at the project’s earliest phases .

On-site support – proxy
Projects usually provide on-site production support for customers .
This could have limitations if the team is distributed in locations far
away from the customer or in other countries, and also from a legal
perspective . This is solved by introducing proxy roles within the team
that is closest to the customer . This role allows the whole team to be
involved and contribute to the production support on their project .

Cultural differences and initial mindset/one-team feel – co-located
kick-off, regular visits, distributed sessions and coffee breaks
If the team is distributed between different countries, it is important
that they are aware of and understand cultural differences . Also, the
initial mindset of one team can be challenging to achieve . It is a key

154

to a very successful distributed team . This mindset can be achieved
by a co-located project kick-off, having regular bidirectional vis-
its, and organising distributed sessions for knowledge sharing, pair
programming, planning and decision-making . In this way, team
members can learn about each other, get to know the cultural dif-
ferences and, by understanding them, communicate and perform
better as one team . Other powerful tools are informal distributed
sessions such as distributed coffee breaks . Yes, it’s as simple as that:
grab a coffee or your beverage of choice, join the group meeting, turn
on the camera and have fun – talk with your team members about
anything you want :)

5. What can you distribute?

Almost any role that doesn’t require close proximity to the customer
can be distributed . We have experience of distributing roles such as
PO, Scrum master, meeting facilitator, software engineer, QA, SD, UX,
DevOps, PM, Agile coaches and many more .

6. What setup do you need for it?

Internet of course, and people :) Infrastructure is an important aspect
that needs to be sorted out by having dedicated rooms/places for video
conferences, good headsets, and other video and audio equipment .
If properly set up, each of your teammates is only a click of a but-
ton away . Team spirit and motivation should develop as the project
progresses, but there is nothing better than getting the whole team
together at one location and defining a good onboarding plan for new
members . It is also important to set up online tools and do all the
necessary preparation (accounts, spaces, licenses etc .) at the earliest
possible stage .

155

After all is said and done, with good preparation following the above
guidelines, distributed development can be a very powerful asset to the
company and a very fun and efficient way to run projects.

By Marko Ivanović

Links:

156

Your team needs a tech lead,
not a lead techie

In what follows, let us assume that a tech lead is an experienced
software engineer who is simultaneously supposed to lead the de-
velopment team and be responsible for the entire technical solution .

The lead shock

There are several points that tend to come up when you ask tech leads
about their career experiences, but the most common one seems to be
that they were overwhelmed the first time they worked in that role.
Why is that?

In my humble opinion, there are two key factors .

Firstly, stepping into the tech lead role brings with it an explosion of
responsibilities that a software engineer has never experienced before-
hand . In addition, many of these new responsibilities are non-techni-
cal and thus often very hard to grasp for someone with an engineering
background . Becoming a tech lead not only includes obvious shifts
such as switching from moderate-scale thinking to large-scale thinking
or from implementation to concept work; it also includes switching
from 90% hard facts to aspects like collaboration, communication,
long-term risk management, expectation management, relationship
management, etc . .

Secondly, the skills required for these new responsibilities are par-
ticularly hard to obtain . That is because skills like technical foresight
or the ability to detect misunderstandings before they cause damage
come from experience . And in the same way that “experience is a

157

hard teacher because she gives the test first, the lesson afterwards”
(Vernon Law), it is also true that experience is hard to teach because
no student in the world can comprehend the abstract lesson without
having felt the concrete situations from which it arose . As a conse-
quence, many organisations fail in preparing engineers for a tech
lead role .

The recipe for dealing with the second factor is quite simple . Experi-
ence can be gained by assigning a future tech lead additional respon-
sibility in small increments, ideally supported by coaching, mentoring
and networking possibilities .

Let us now explore the first factor:

Responsibilities

Many authors claim that a good tech lead should spend at least
around 30% of their time writing code . That may be helpful in many
setups, but it certainly isn’t in the ones I’m talking about . In the pro-
jects in which I am involved, writing code is a thing that the team
already knows how to do well . As a tech lead, I wouldn’t help them by
doing more of the same . On the other hand, each hour I spend writ-
ing code is an hour I cannot invest in issues beyond coding — issues
that need to be resolved in order for the team to make the most of
their working hours . A tech lead should be a multiplier for the team,
and adding code to the repository does not help in this regard . After
all, it makes much more of a difference to help ten developers be 10%
more effective than to contribute a mere 0 .3 full-time equivalents
of coding power .

So how can the tech lead make a team more productive? This is im-
portant stuff, so allow me to elaborate .

158

Developer productivity

For the sake of brevity, let us simplify things considerably by saying this:

The project manager and the tech lead define the development process,
documentation guidelines and other general constraints .

The tech lead takes in the product vision, plus high-level requirements
and cross-cutting concerns, and outputs a definition of the big pic-
ture, namely how the system is broken down into components, what
responsibilities these components have, and how these components
are supposed to collaborate .

Each developer is responsible for a couple of components . She or he
takes in requirements that affect these components, plus architectural
decisions, and outputs implementations of the respective features that
adhere to the architecture as well as all the other constraints .

This may be a crude simplification (especially for mature teams), but
it suffices to understand a crucial point: the productivity of developers
depends to a considerable extent on the quality of their input, that
is, on the quality of requirements, architectural decisions, process
definitions, documentation guidelines, and so on. Therefore, a tech
lead can make a huge amount of difference by making sure that the
quality of this input is high .

Garbage in, gold out?

The last sentence can be put as a rule, too: the tech lead needs to
act when the team is expected to produce high-quality output from
low-quality input (in the above sense) .

Here are three consequences of this rule:

159

The tech lead needs to team up with the project manager in order
to help him or her define processes and guidelines that have a good
balance between formal needs and everyday applicability .

The tech lead needs to team up with the business analysts and re-
quirements engineers in order to help them produce output that will
enable developers to process it efficiently.

The tech lead needs to define an architecture that allows developers to
reason about the system despite its overall complexity (a complexity
that, in its raw form, exceeds the capabilities of any single human
being’s mind, cf . Dijkstra’s 1972 Turing Award lecture) .

Drill-down

As the above rules and consequences are quite abstract, let me make
things clearer by listing some specific lessons in this regard:

There is a human tendency when it comes to specification and doc-
umentation, namely a tendency to describe trivial and blatantly ob-
vious things in minuscule detail while hardly even mentioning the
complex stuff (because it hurts in the head) . A good tech lead will
watch out for this anti-pattern and react accordingly .

Software documentation in particular is often very unpopular because
developers are (a) forced to work with inappropriate templates, (b)
asked to document low-level details that are obvious from the code,
and (c) not guided to document the overarching design decisions and
calling conventions that are NOT obvious from the code (and that
are thus really worth documenting) . A good tech lead will make sure
that the templates such as the templates for the software design doc-
uments for the individual components, encourage documenting the
relevant, non-obvious information .

160

It is often the case that processes and templates are defined by people
who do not have to work with them . That is a recipe for disaster since
efficient applicability is not checked; instead, the overhead for useless
work induced by the definitions can be arbitrarily large. A good tech
lead will therefore intervene with all their might when they spot bad
processes or templates .

Business analysts and requirements engineers may be good at judg-
ing the benefit of a feature, but they cannot be expected to be good at
judging the implementation or maintenance costs . A good tech lead
will help them understand the cost/benefit ratio by explaining the
technical complexity in a comprehensible fashion .

In the same way, a good tech lead will act as an interpreter between
the customer and the development team .

As for the architecture of the software system, a tech lead should keep
the following rule of thumb in mind: developers implement features,
and implementation is always a bottom-up process . Architecture, on
the other hand, is a top-down issue: starting from the product vi-
sion, it defines a technical breakdown of the system into components
and conventions that result in a uniform, intellectually manageable
whole. Hence, there is a sweet spot: the tech lead needs to define the
architecture down to a level that the developers can work against, but
no further. If the architecture definition is too shallow (underspecified
and abstract), then the developers will struggle because they don’t
know what to do. If the architecture definition goes too far (over-
specified and too concrete in nature), the developers will suffocate in
constraints that forbid them to solve their problems in their own way .

Similarly, a good tech lead will be aware of the following fact: a devel-
oper’s work is about depth, not breadth . Many implementation tasks
require the developer to dive into the code or even the silicon for hours

161

on end; each distraction forces the developer to sort their mind and
dive into the issue again from scratch . The tech lead’s job, on the other
hand, is about breadth, not depth . Therefore, the tech lead needs to
provide guidance on the overarching aspects (module collaboration,
lifecycle aspects, inter-component versioning, system integration,
multi-threading issues, etc .) . The boundary — what can the developer
provide, what does the tech lead need to supplement — depends on the
seniority of the developer, and the tech lead needs to be aware of that .

Furthermore, a good tech lead will have a sixth sense for technical
risks and unexpected effort . For example, the software upgrade mech-
anisms and the configuration management for distributed systems
are usually underestimated, and a tech lead will keep that in mind
when estimating a project’s cost .

Final remarks

Leadership is a very complex subject, and hence, it is a bold undertak-
ing to try and describe how it works in a single article . Nonetheless,
I hope that my perceptions contain something that you can put to
use, and that I have managed to resolve the mystery of the tech lead
question at least a tiny bit .

By Daniel Mölle

References:

PART III:
MACHINES, CODE

165

Application first – a bottom-up
architecture approach

When advising a large company, we often encounter a scenario in
which a range of small to large applications, written by employees
for various purposes, has been developed . Commonly these tools are
spreadsheets stored in Microsoft Excel with a portion of business logic
or databases created in Microsoft Access . Those applications accumu-
late a significant amount of knowledge and information that is essen-
tial for the business . The apparent ease with which such applications
facilitate the work of the business units (“Let me just do this in Excel”)
ensures a rapid spread of these applications as “undercover projects”
and thus presents the company with a broad set of challenges .

The challenge

On the part of the business units, business-critical data and informa-
tion are handled in an uncontrolled manner and this goes unnoticed
by the company’s IT department . This entails risks, not only in terms
of data protection and the availability of the applications, but also in
terms of non-compliance . Both may have serious consequences for
the company . In addition, the business unit staff spend a considera-
ble amount of their time maintaining these applications instead of
concentrating on their actual duties .

On the part of the company’s IT departments, however, there is a
need to curb this “uncontrolled growth” . To ensure that this can be
done efficiently, in the eyes of both the employees and the company,
it is important to ensure a standardized application landscape . This
allows for new applications to be developed quickly and for existing
applications to be maintained cheaply .

166

A bottom-up architecture approach

A popular choice is to first develop a common framework. By de-
cree, this is then used as a foundation for all applications created
henceforth . However, creating a framework is usually expensive and
time-consuming without creating direct added value for the com-
pany’s business . In addition, there is a high risk that the framework
does not meet the actual requirements when the applications are
eventually developed .

When facing such challenges, we usually guide our customers in a
different direction: Instead of creating a framework upfront, we sim-
ply create the first of the new applications. This application not only
delivers added value to the business right from the first release, but
acts as a nucleus for upcoming projects too! We call this first applica-
tion the “incubator application” .

167

The development of the second application starts with generalizing
components from the incubator into an “architectural construction
kit” . This includes the application skeleton with a basic UI layout, nav-
igation structure and authentication and authorization capabilities .

As the family of applications built using our construction kit grows,
so does the construction kit . While more and more components are
shared between applications, it is important to provide the re-usable
artefacts in an appropriate and easily accessible form, together with
comprehensive documentation . This approach enables effective and
efficient development, since the developers do not have to complete
recurring standard tasks repeatedly with each project . On the other
hand, it increases the quality of the software in the long run, since
defects that have been fixed in the construction kit remove the issue
from all affected applications .

Money for nothin’ and change for free?

Although this approach is certainly cost-effective, it does not come
for free . Both the construction kit and the developers’ mindset need
active maintenance. Otherwise, the once flexible construction kit will
become stale and turn into yet another framework rather quickly .

Usually, the construction kit maintenance will be carried out as part
of the ongoing application development . But as the number of applica-
tions and developers grows, it is essential to have an experienced de-
veloper acting as what we like to call a “free electron” . This developer
should have both the time and the budget to enable communication
and know-how transfer between project teams . This ensures that
synergies between the projects are reliably recognized and utilized,
and that differences in the know-how of developers can be balanced
by suitable measures . A question we usually get in this context is: who

168

is going to pay for the free electron? In our experience it is important to
fund this role in a way that does not strain the projects’ budgets . This
mitigates the risk of projects missing out on using the construction
kit due to financial concerns. It also ensures that maintenance of the
construction kit is not being rationalized away due to being seen as
just a cost factor with no added value .

Conclusion

Using a bottom-up architecture approach has many advantages over a
top-down one . Apart from delivering additional value to the business
right from the beginning, it comes with a high return on investment:
projects will get started faster with fewer problems . Due to a common
set of components and common standards, developers will gain speed
more quickly . Re-use becomes a reality and not a nightmare . Try it
for yourself: If you start to think about developing a framework, start
with a real application instead – your framework will emerge over
time when needed!

By Markus Rehrs

169

Architectural programming

Architectural Programming (APRG) is a programming discipline for ar-
chitectural elements and structures such as services, data sinks and
sources or communication channels . It abstracts from infrastructure el-
ements and hence is distinct from infrastructure as code . The approach
requires APIs for architectural elements in order to create and evolve an
architecture model using code . Azure, Google and AWS, for instance, all
provide such APIs with services ranging from IaaS, CaaS to PaaS .

With the first implementation of the APRG approach, we extended
Structurizr [Structurizr], an executable Architectural Description
Language (ADL), with an explicit and coded relationship to the cloud
infrastructure that is actually needed to implement and execute the
system . This bridges a gap that nowadays still exists in most software
development projects, a gap between models and code .

The coded model is the very basis for an envisioned overall develop-
ment workflow that allows the validation of architectural decisions
by executable quality attribute scenarios similar to the validation of
acceptance criteria by automated functional tests . By expressing the
model as code, compliance with quality attributes such as “all storage
services are only available from virtual networks” can be tested .

170

Architecture models in the product lifecycle

Architecture modelling takes user and business requirements into
account in order to provide a guiding structure and enable decisions
regarding the implementation and operation of a system, which is
ultimately delivered as a product to the customer .

Such a model comprises at least the following:

• system architecture for tiers, infrastructure and connectors be-
tween tiers

• application architecture(s) as a grey-box view of the different parts
of the system architecture . This view details components and con-
nectors between components

• quality attribute requirements specifying the qualities required
from the resulting system

• architectural decisions as a record of options available and explicit
decisions needed to fulfil the given requirements

In the following we consider mainly the system and application archi-
tectures . An extension of the approach to requirements and decisions
requires further research beyond that which we have implemented
so far (see resources: [Structurizr .InfrastructureAsCode]) .

Architectural erosion and the model-code gap

Architectural erosion is the divergence of the architecture model from
the source code and infrastructure that actually implements the
model . It results in a model-code gap and usually happens gradually
during the iterative and incremental development and maintenance
of a system . The code and infrastructure evolves, but the architecture
model is not kept in sync . After a while, we end up with a model that

171

describes the system as it was meant to be in the beginning but not
as it is actually implemented and delivered .

Such a system is often called “historically grown”. It is difficult to
maintain and to evolve, since decisions are often implicit, based on
local knowledge, and no longer comprehensible once some time has
passed. Fulfilment of the quality attribute requirements becomes
harder and harder to achieve .

Towards Architecture as Code

Our approach is one step towards closing the model-code gap . It com-
bines Architecture as Code with APIs for Infrastructure within the
same code base . As an example, consider the following architecture
of an Internet of Things solution built to monitor a factory producing
stuffed animals:

172

The frontend tier initially integrates directly with the event store,
which is an Azure blob storage solution . After some development it-
erations it is decided to separate the persistence logic and turn it into
an event manager component acting as a facade to the event store .
An update of the diagram, taking into account this new component,
is necessary and if not done leads to architectural erosion .

Instead of modelling the architecture in a diagram, we may use code
like the following:

173

Now, when this gets executed, the corresponding infrastructure and
connectors are created and the system is ready to be used according
to its description in the code .

Note that the implementation is based on Structurizr, an executa-
ble ADL which also allows architectural diagrams to be generated .
Therefore, we may additionally generate up-to-date views of our cur-
rent models, as needed, in the system’s Architecture Guidebook, for
instance .

In case we need to evolve or refactor the architecture, we work directly
with the code . Only by this means are we able to modify the actual
system and hence the model is always in sync with the code and in-
frastructure . Of course we could also change the system directly, but
this is similar to changing code in a running system without updating
the underlying source code in the repository, an anti-pattern which
is hopefully nowadays no longer practised anywhere .

Finally, code can be executed and tested . If architectural require-
ments are implemented as tests, the architecture can be deployed
to a dedicated environment and then the tests executed in a simi-
lar manner to functional acceptance testing . If we change the ar-
chitecture in the next iteration the tests may fail, indicating the
 incompatibility of the architectural change with the existing quality
attribute requirements .

174

Conclusion and outlook

The idea of Architecture as Code provides a required abstraction to
Infrastructure as Code . With tools like Structurizr and its extension
we move further towards executable ADLs which not only describe
but actually implement the architecture of a system .

By Stephan Janisch, Christian Eder, Alexander Derenbach

Further reading and additional resources:

175

Architectural programming
in the development workflow

Envisioned development workflow

How does the architectural programming (APRG) approach fit into the
development workflow of a software product? We think the first im-
portant step is to have the model managed in the same repositories as
the source code that implements the functionality of the system . This
provides the very basis of a system development approach that allows
architectural decisions to be validated and tested in a similar fashion
to the way in which behaviour-driven development [BDD] works for
functional acceptance .

Version control and executability

Most development teams document everything in a wiki (e.g. Conflu-
ence) . As this wiki is often the central place for documentation, it feels
natural to store the architectural documentation next to the business
documentation . In many cases, this documentation also needs to be
delivered to the customer, so having it in one place seems a mean-
ingful approach . But from the perspective of evolving architecture, it
makes much more sense to store the documentation with your source
code . It could be stored on the same branches and tags as the source
code without the need for any extra housekeeping . In addition, less
distance between them will support keeping the gap small .

Architecture is often expressed in diagrams . On the one hand, they
can give an overview of the system while, on the other hand, you can
dig as deep as required into the details of a system without writing
dozens of documents no one ever reads . Many current tools already
use an XML or JSON format which could be checked into a VCS . But

176

anyone who has ever merged conflicts in an XML document knows
that this is not the best thing you can do . Additionally XML and JSON
formats provide no (or at least less) semantics which could be exe-
cuted . And often multiple diagrams show different views on the same
model . Every change of the model requires a change in all views .

Using architecture as code is beneficial here in all cases. Merging the
code is much more intuitive, as the language can be the same as the
source code itself . Also changes in the model are type-safe (depending
on the language you eventually use at execution time), so all views
will be taken into account .

And, finally, code can be executed and tested. Architectural require-
ments which are expressed by code can be verified. The code can be
processed in a CI/CD pipeline . After running the tests, the architecture
can be deployed in a dedicated environment .

Decisions, scenarios and tests

A further step towards bringing the complete architecture model and
the code together is to store your architectural decision records (ADR)
with your code. ADRs are short text records in a defined format. This
helps to keep decisions simple but informative . See [ADR] for further
details .

ADRs are made to fulfil quality attribute requirements for a system. So
ADRs are the architectural stories of the system and quality attribute
requirements are the acceptance criteria of these stories .

We could write tests based on these acceptance criteria to prove which
ADRs are fulfilled. As described in [EVOL], writing these tests can be
a challenge, since there will be no one recipe to rule them all . One
test could involve the execution of a performance test in a special

177

 environment set up by the architecture code to test performance re-
quirements . Another could involve automated penetration tests for se-
curity or resilience tests following the principles of chaos engineering .

The important thing is for the test system to be set up using archi-
tecture code . Only then is it possible to prove that the system still
satisfies all requirements. Since the effort for testing must, as usual,
be balanced against the actual value it creates, it is advisable to follow
a risk-driven approach and create ADRs and tests only for the parts of
the system where the potential risk indeed requires it [RISK] .

Conclusion and outlook

The current state already provides a good basis for storing architec-
ture as code with your source code . With ADRs you can already store
the important decisions under version control . Additionally the ap-
proaches regarding architecture as code get increasingly mature . Im-
plementing the architecture gives you the full spectrum of software
engineering techniques for your architecture, starting with version
control, CI & CD pipelines and testing against given acceptance cri-
teria . Parts of this idea already exist, others must be developed and
some still sound like fiction.

By Stephan Janisch, Christian Eder, Alexander Derenbach

Further reading and additional resources:

178

CI and CD done right

Short introduction and history of CI

Continuous integration (CI) was adopted and driven by the extreme
programming (XP) methodology in order to combat integration hell .
XP first advocated writing unit tests which every developer can run
locally before merging to the main line . In later iterations of XP, the
concept of a build server was introduced and further improvements
led to what we refer to as CI:

• Fast automated builds
• Run on every commit
• Including tests
• Run by some mechanism that can provide feedback to developers .

Short introduction to CD

Continuous delivery (CD) builds upon CI with the aim that the main-
line branch can be released and deployed to production at any time .
Continuous delivery is quite similar to continuous deployment but
continuous deployment will deploy any merges to mainline to pro-
duction (if tests pass), whereas with continuous delivery, releases and
deployments are triggered by a human . For an example see below:

179

The pipeline follows the fail fast approach, delivering quick feedback
and ensuring target systems remain in an acceptable state if tests fail .

180

How to do it right

There is no one way to do CI/CD right . The same way you can’t have a
right way to do Scrum or XP .

There are a number of obstacles to overcome on your road to CI and
CD . Obstacles you must overcome can be categorised as:

1 . People
2 . Organisations
3 . Tooling

Issues around people

Inexperienced developers

They tend to write code that is not designed for testability, resulting
in

• fewer tests, which then results in bad quality and an increasing
chance for a bug to sneak into production . This can torpedo CI/CD
because people advocate “taking more time” to fix issues. It is im-
portant to remember that CI/CD can give you the same quality faster .
Your best approach will be to coach or lead by example on how the
issue could have been fixed without sacrificing speed. Your success
depends on how much the team believes in CI/CD .

• Tests using a lot of mocks tend to be more fragile . Fragile tests di-
rectly hinder integration because tests have to be fixed. Here, your
best bet is enabling developers to design better code so they can
get rid of fragile tests altogether . It is imperative that you act early
because once this issue escalates, CI/CD will be seen as a constant
pain .

181

• Slow/flaky tests with a difficult setup on a higher unit than nec-
essary. Your delivery pipeline slows down and must be fixed by
demonstrating better software design to your team .

Large product backlog items

Large product backlog items (PBI) or big impact changes created by
inexperienced requirements engineers are the enemies of quick in-
tegration if they must be integrated as a whole . Inexperienced devel-
opers may be tempted to defer integration until “their” PBI is done,
leading to integration hell as by then a sizeable piece of the codebase
will have been changed .

Scepticism

A lot of people are sceptical until they experience the benefits. The
best way is to focus on a small set of pain points and to address them
transparently . There may be people that object to the idea of having a
faster integration cycle fundamentally; if their beliefs are motivated
by personal reasons then you may need to restructure your team .
Examples are:

• Clinging to manual tests out of fear of losing control
• Weak confidence (without explanation) if build is green
• Taking pride in a “build master”, that is a human quality gate

through which all code must pass

182

Organisational issues

• Increase in pressure: An organisation may redirect its resources
away from CI/CD . Prepare stakeholder buy-in before starting CI/CD,
be transparent and point to buy-in throughout implementation .
There is no shame in failing transparently .

• Unsuitable process: There may be other processes conflicting with
the goals you want to achieve . Get management buy-in beforehand
and pick which processes to challenge; you will lose some battles
to win the war .

• Unsuitable infrastructure: It may be very difficult to realise CI/CD
with the current infrastructure . This is something you should check
before starting and raise as a precondition . Explore different infra-
structure providers by going to the cloud, or request new hardware .

• Code review ping-pong: Asynchronous code reviews take longer
and require more task switches . Try out face-to-face reviews or
pair programming .

Tooling issues

• Slow regression feedback: You may experience slow feedback due to
hardware constraints. The first solution is to pay for better hard-
ware (which is cheaper than humans). Otherwise see “Slow/flaky
tests” above .

• High-noise feedback: The feedback from your pipeline can overwhelm
people, and they will ignore feedback altogether . Make sure you only
send feedback in cases where human intervention is required .

• Long integration queue: If you see a build server being overloaded
with requests, get more servers/scale out in the cloud .

Solving obstacles around people is both the hardest and most impor-
tant challenge you must overcome, while tooling is the easiest and

183

least important . A successful CI/CD pipeline will make you and your
team more productive and will increase quality .

By Florian Besser

Further reading and additional resources:

184

Clean code best practices

Being a developer these days involves sometimes developing features
and fixing bugs at a fast pace, which can result in code that is diffi-
cult to maintain in the long-term . In other cases, we want to make
the most elegant solutions possible to solve some problems . This can
produce code that machines can understand but people have more
difficulty understanding. Such code can become a major issue for a
company to maintain and use in the long run .

Our objective should be to write maintainable, understandable, sim-
ple and readable code, and we need to make an extra effort for this to
happen . It should be easy for our colleagues to change and understand
the code we create, but this is not an easy task to achieve, especially
in large projects . So we need to practice writing tidy code and fail,
fix it and repeat again until we achieve clean code. We can do this
by re-writing code as we go, rather than waiting for big refactorings .
Another good approach is that we try to type out all our code, rather
than copying and amending it, as we often do, as the former results in
a better understanding of what we are doing, which helps us produce
better and cleaner code .

This is the best way of creating clean code, and it also helps to apply
some guidelines, principles and techniques, as described below .

• Naming – Naming things is one of the most important things in
software development . Names are everywhere in software . We
name methods, classes, files, etc. It is important to give mean-
ingful names as they need to indicate the purpose of that part of
code . Names should be expressive and clear enough to allow us to
immediately know what the code does . This also helps with the
implementation of a self-documenting approach .

185

• Clearness – As a main guideline, the problem that the developer needs
to solve is of critical importance, but the software solution must be
understandable for a developer who didn’t write the original code .

• Focus – Good code should comply with the Single Responsibility
Principle (SRP), so that the code we write has one specific purpose
and is compact, as well as being responsible for a single part of the
functionality .

• Simplicity – We should always try to apply the DRY (Don’t Repeat
Yourself) rule . What this means is reducing any repetition of code,
so that a single change does not require numerous changes in the
code . In addition, we should follow the KISS principle (Keep It Simple
Stupid), which forces us not to complicate things unnecessarily .

• Readability – In order to make code more readable, we can follow
the YAGNI principle (You Ain’t Gonna Need It), which implies that we
shouldn’t write code upfront that is not currently needed .

• Commenting – As comments usually represent an anti-pattern, we
should be careful with them . If we insert a lot of comments, this
usually means that the code is not self-documenting . We should
instead focus on creating more clear and readable code and not
having to add numerous explanatory comments in the code .

• Formatting – We always first tend to focus on creating software
that works, but in the long run we also need to have good reada-
bility . To achieve this, our code needs to have a coding style that is
understandable by a team, because otherwise maintainability can
be seriously affected, especially in large projects . Although we now
have powerful tools that can take care of formatting, teams should
still adopt formatting rules and follow them .

Along with these guidelines, a developer should use “code sense” when
looking at code . This allows people to see different options, so that they
can select the best variation of it, to make value-added and clean code .
To do that, we must practice coding and explore different dimensions
of programming languages .

186

It is also important to remind ourselves that we need to write nice
and clean code, but also code that solves the problem . Of course, we
need to deliver code, whether it is clean or not, rather than not deliv-
ering it at all . However, the creation of clean code should always be a
priority, as this will bring more benefits to a project in the future. It
should become standard practice to go back and clean the code before
moving on to the next task .

By Milan Milanović

187

Codify your developer VMs!

Let’s talk about developer VMs, and why you absolutely and definitely
must automate them (no excuses)! :)

What is a “Developer VM”?

A developer VM is a virtual machine image that contains the complete
development toolchain that is needed to work on a specific project
(including compiler toolchains, IDEs, system wide settings, etc . . .) . The
aim is to ensure a consistent environment not only between team
members of that project (which may have completely different oper-
ating systems on their laptops), but also with the build agents in the
CI environment .

Why would I need a developer VM anyway?

Some people hate it, others love it. However you put it, it is a sure-fire
way to ensure that the whole development team uses a consistent
environment and avoids the typical “works on my machine” issues we
all know about . Especially for us, executing and delivering a multitude
of projects (and engineers joining and leaving these projects more or
less frequently), developer VMs have become an indispensable tool .
Not only for the consistency aspect, but also for reducing ramp-up
times or being able to easily archive the development environment
when the project enters the retirement phase .

On regulated projects this is even more relevant, since you need to
validate and verify the development toolchain and need to ensure
that everyone uses exactly that defined toolchain.

188

OK, but why should I automate it?

While we started out to craft these VMs manually (and with love) in
the early days, we can nowadays easily automate the whole procedure
with tools like Vagrant, Chef, Ansible, etc . Applying automation and
Infrastructure-as-Code principles to developer VMs not only increases
transparency and reproducibility, but also allows for an in-VM update
mechanism to maintain consistency while the toolchain evolves dur-
ing the lifetime of the project .

Finally, an automated developer VM should exhibit the following
 properties:

• updatability – an existing VM can be updated with the push of a
button from within the VM

• testability – automated tests are run in the VM to ensure that it
works as expected

• installability – the VM is distributed as a standard VirtualBox /
VMware image

• adaptability – developers can easily adapt and improve the VM as
the toolchain evolves

• reproducibility – changes to the development environment are
transparent, traceable and reproducible

How can I automate it?

The good news is that there are quite a few so-called “Configuration
Management” tools out there, which essentially allow you to automate
the provisioning of software and configuration on top of an existing
operating system (in our case a fresh installation of the operating
system of choice, within a VM image) .

189

The bad news is that you have to choose one . In addition to the con-
figuration management tools that do the provisioning, there is (fortu-
nately) also a multitude of tools for testing the configuration of such
a (virtual) machine .

Depending on your preference, these are the tools you are likely to
end up with:

Rubyists will like
• Chef – as the configuration management tool
• Foodcritic – for linting their Chef recipes
• InSpec / ServerSpec – for testing the Chef-provisioned systems

Pythonistas probably prefer
• Ansible – as the configuration management tool
• Ansible Lint – for linting their Ansible roles
• TestInfra – for testing the Ansible-provisioned systems

It is not all a bed of roses though!

Two things to highlight:

1 . Developer VMs are clearly a compromise between consistency and
performance: you save valuable time by avoiding the “works on my
machine” issue and speeding up onboarding time for new team
members . The price you pay is the runtime overhead for running
the VM in a hypervisor rather than working with the tools natively
on your operating system of choice .

2 . The automation part is sometimes hard (especially on Windows)
and is not just a case of software installation but also configu-
ration of settings like networking, firewalls, access rights, etc.
These are not things that everyone knows how to automate, and

190

you will have to grow and master these skills as part of your
journey .

I’m still sold, sounds like pretty cool stuff! What
is the fastest way to get there?

It may sound like a bit of effort is required to achieve this if you start
from scratch, so that is why we have a template / skeleton project
along with a tutorial for you . No excuses for doing it manually any-
more! ;-)

This is what you need to get started:

• A ready-to-use template / skeleton project for a minimal, Linux
based developer VM: https://github .com/Zuehlke/linux-develop-
er-vm

• An example Java Developer VM based on the above (see Pull Requests
for a step-by-step guide): https://github .com/tknerr/etka2017-devel-
oper-vm

• The accompanying conference talk for creating the example above:
http://bit .ly/automated-developer-vms

• A ready-to-use developer VM to with a toolchain for automating
developer VMs: https://github .com/tknerr/linus-kitchen

By Torben Knerr

191

Containerisation and why to use it

You are a good software engineer, but releases are a time of pain . Your
project matches one or more of the following:

• Deployments are done manually or via scripts that execute on some
remote host .

• Scaling the app is hard as new machines or VMs take weeks to
arrive and set up .

• Your application dependencies differ in version or feature set be-
tween environments .

• Developers have difficulty reproducing production issues on their
local machines .

• Application dependencies are installed manually, developers spend
days setting up their own machine .

This article will explain how containerisation can help solve each of
these issues .

Cumbersome deployments and dirty hosts

Running scripts on a host seems OK in the beginning, but over time
your host will become “dirty” . Some versions of your script were only
run in QA, and production has leftover artefacts from previous deploy-
ments. These leftovers confuse maintainers and reduce confidence in
your team’s ability to deploy software to production systems .

With containerisation, you immediately get rid of leftovers your soft-
ware may cause . By throwing away the old container after deploying
a new version, you have already cleaned up after your application .

192

Sometimes you want to persist data across container crashes or re-
starts . In these cases you can use volumes to store the data and not
pollute your host . Volumes allow you to use containerisation with
databases quite nicely: The data is safe from crashes but up- and
downgrading a DB is just a question of stopping the old container and
booting a new one .

More hardware and the procurement process

There is a conflict between needing more resources and a company’s
willingness to spend money . Usually, there is a long-winded procure-
ment process for ordering hardware and getting it installed in a rack .
At the current time, when hardware is cheap and humans are expen-
sive, paying some PaaS a few hundred bucks a month is cheaper in
most cases .

Any established platform will offer you support for Docker, and if you
have containerised your application you’ll be able to solve the scaling
problem a lot more easily . Usually, this involves uploading the image
to the platform, creating a service and then defining scaling rules
for said service . While the platform will not run on your local ma-
chine, this does not prevent you from testing locally, as you can install
Docker and are guaranteed the same runtime as on the platform .

Protip: Most platforms offer some functionality for doing rolling up-
dates, you can deregister your containers from the load-balancer be-
fore killing them, thus achieving deployments that are invisible to the
customer . Now every day is a production deployment day!

193

Different environments, different dependencies
and the highway to hell

Differences between environments should be as small as possible,
but they tend to increase over time . Someone upgrades only the QA
database for testing; someone applies emergency security fixes only
to production because other environments are not critical. You find an
increasing number of builds pass QA but fail in staging or production!

Containerisation can remove this problem as whatever is contain-
erised is versioned and there are orchestration tools that ensure all
dependencies are the correct version . Orchestration means that the
app and its dependencies are deployed together as one coherent bun-
dle . This way you can remove uncertainties for everything you can
containerise .

Note that many things a novice deems uncontainerisable are actually
containerisable: From any database, including Oracle, to messaging
systems to webservers, you’ll find premade images or you can roll
your own. Anything that runs on an unmodified Linux kernel can be
containerised!

Production bugs and developer madness

We task developers with reproducing production bugs locally and fix-
ing them . This approach can suffer greatly if the developer has to
emulate production instead of running an exact copy . In the worst
case, this leads to unreproducible bugs and some “blind” bug-fixing
in the hopes that changing some related thing will solve the issue .

Luckily, with containerisation, we are able to run an exact copy of
the version that is in production . If bugs are not reproducible, they

194

depend on application dependencies (see above) or on the production
configuration (but that should be easy to debug!).

Setting up ::1 and the onset of despair

As people join there’ll be a recurring pain setting up new machines .
Done manually it has two downsides: Any newcomer must experi-
ence the setup of all the dependencies used and they end up with
different versions than their teammates . This introduces “works on
my machine” between developers, costs a lot of time and demotivates
newcomers .

But if you already containerise your dependencies and have an or-
chestration solution, then you run the orchestration locally . You’ll get
the correct dependencies, the correct version, and the correct config-
uration .

Note that some people argue that setting up everything yourself is a
good exercise but I think the dangers outweigh the knowledge gain
as the knowledge can more easily be gained by giving newcomers an
overview and some first tasks with purpose.

By Florian Besser

195

Do something
about that slow SQL query

Please, don’t blindly buy more memory, faster disks or CPUs . To start
solving database performance problems, first of all, you need under-
standing . So let’s start removing the veil of mystery from the topic of
SQL performance . Let’s understand what can we can do to make our
database run faster .

A typical performance problem would be one large query executing
for a long time, or an enormous number of micro-queries bringing
the database server to his knees .

First of all, you need to understand the cause of the problem . Do not
optimise blindly . Find a way to monitor all the processes on a trouble-
some server . Be sure that there is no other process that is suffocating
the server, i .e . that the slowness of the database is not caused by some
external factor .

If the database is what is exhausting most of the server resources,
you need to find out why this is happening. The database essentially
responds to a set of queries sent by clients, using the data stored in
the tables . You need to have an insight into these queries to know
which one of them precisely is problematic . The database, or the ORM
framework, usually has the ability to record all the queries in the log
file, as well as to measure their performance. It is vital that you are
able to search the log files, find the number of queries at a certain
time interval, and find the slowest and/or frequently repeated queries.
Sometimes for these things, it is sufficient to manually review the
log files, and sometimes you will use tools (log analysers) to dig and
visualise this information .

196

If the database is slow because of an unexpectedly large number of
small but quick queries, then it is usually necessary to:

1 . Change the client so as not to send an unreasonably large number
of queries, but to join more queries into one . A typical problem
with the ORM framework is unnecessary lazy loading . In case of
reading multiple records from the database, this becomes an “N+1
problem”: your query will get only basic data for all N rows, and the
ORM framework will execute one additional query for every sin-
gle row . Carefully selected eager loading (either as part of a query
using the “fetch join” construct, or declerative) can significantly
reduce the number of queries and improve performance .

2 . If smaller queries are really necessary, then analyse the queries . It
may happen that a lot of queries like ID/username lookup are being
repeated over and over again . If that is the case, consider caching
the results of frequently executed queries (either by using the ORM
cache, a 3rd party cache, or rolling your own) . It may speed up total
query execution time dramatically .

If the database has one very slow query, or several of them, then they
need to be analysed individually and possibly accelerated by the fol-
lowing means:

1 . Create indices over appropriate columns (primary keys, foreign
keys, columns in JOINs, columns for search / selection)

2 . Create partial indices (e .g . over active records, or over records of a
particular type)

3 . Avoid selecting unnecessarily large amounts of data (e .g . selecting
all the rows from a big table when the user might view only the
first couple of pages, or selecting all columns when only some of
them are presented to the user)

4 . Optimise correlated subqueries

197

5 . Check the plan for query execution and database statistics, and
update statistics if necessary

Finally, if the number of queries is within expectations, and the exe-
cution of each query is slower than expected, there may be a systemic
problem and the solution is to check the configuration. E.g.:

1 . Not using the connection pool can slow down any query, because
establishing a TCP connection takes time

2. Incorrectly configured memory allocations can contribute to un-
wanted swapping of virtual memory between RAM and disk,
which is disastrous for performance

3. The wrong file system and RAID configuration (RAID 10 or several
RAID 1 groups perform the best; avoid journalling on log partition
file system; avoid RAID 5 as it does not perform very well).

4 . Wrongly selected storage . For example: NAS and SAN, despite simi-
lar acronyms, are very different storage solutions with completely
different performance .

5 . Not enough RAM . If the entire database (together with indices) ex-
ceeds the available memory, performance may be poor . In the case
of large databases that cannot be completely stored in memory,
it may be unavoidable, but in the case of smaller databases, the
biggest performance jump is obtained if the whole database is in
the memory .

6 . Bad hardware . Sometimes you just need to get better hardware .

Here, we have introduced some practical solutions for how to tackle
database performance issues, and this can be used as a starting point
for you personal optimisation quest .

By Ognjen Blagojević

198

Frontend is not your enemy

For many years now, we have been neglecting frontend web technol-
ogies .
• “It is too volatile!”, I’ve heard someone say at the back
• “But I only learned Angular 1.0 yesterday, and today it’s already

v3.3.1”, one Java developer yelled while hiding the tears...

We have been witnessing an explosion in frontend for a decade or
so, due to so many innovative requirements to create the most us-
er-friendly web app . As you will see, many good things have come
out of this pile . . .

ECMAScript and OOP

ECMAScript is a standard that drives all new native JavaScript fea-
tures . ES6 in particular brought many improvements that developers
had craved for a long time .

A big step forward are classes . There is no longer a need for that cold
sweat before we use Prototype or function constructors, hoping chaos
won’t unfold in the process . Classes are especially useful for develop-
ers who come from an object-oriented language like Java or C# .

There are also other features that you will fall in love with . Like let,
const, lambdas, destructuring, async/await, default params...

I recommend taking a look into the ES6 documentation and getting
familiar with the features .

199

Compile time checking

Ok, I guess that some of you might feel more comfortable working on
backend with strongly typed languages, and you are used to having
your IDE insult you with Cannot assign boolean to string! So you per-
haps find frontend rather repulsive.

Well, guess what, you have all that now with TypeScript! You can even
customise the guidelines and allow the team to agree on these, so
that engineers will be notified if they, for example, define a method
without a return type .

It has all the OO principles that Java has (and much more), such as
interfaces, abstract classes, enums, etc . . .

Build tools

Yes, there’s a proper build in frontend . And this has been the case for
a while now . And do you know what, one can even import .css into .js
files now! I know, what kind of monster would do such a thing. Well...

Node basically opened the door to a whole new universe of wizardry
we can do in frontend development . Node is a popular JavaScript runt-
ime built with V8 engine (the same as Chrome) . With Node, you can
easily build scripts or backend web APIs that execute on any OS envi-
ronment. Many big players use it, such as Uber, Netflix, PayPal, etc...
It started with simple task-runner packages (Grunt and Gulp) that
can help you organize your code, clean-up, uglify/minify it, and much
more . Now we have Webpack, the most popular build and bundling
tool on frontend . Using various loaders, you can easily import modules
and do all kinds of transformations on your code, from development
to deployment phase .

200

When you have to choose a build tool, choose the one which is bat-
tle tested, has a great community support, is feature-rich and per-
formant .

Frameworks and libraries

What kind of IT article would this be if the word framework didn’t find
its way on to the page somewhere . However, I will try to be unbiased
and talk about them in general .

Should you use them? Yes! They help a lot with development and in
terms of keeping your architecture clean . They also help with in-
troducing new team members, as they become familiar with them .
Most of the mature ones provide similar solutions and follow similar
patterns:

• Data binding
• Routing
• High performance templates
• State management
• Virtual DOM
• Testing utilities

“But which one should be used?” Well, it is indeed painful to choose
the best framework in the ocean of great ones . Currently, I would
recommend evaluating React, Angular and Vue .

201

Testing

As frontend apps are becoming more and more complex and heavy
with logic, it is crucial to treat them like grown-ups . Thus, testing
JavaScript code is not a luxury any more, but rather our duty . Again,
“WHICH ONE?”, you might scream, and again, “It depends”, I shall
respond .

As you might have guessed, each framework has its own specific test-
ing tool . These are some popular ones:

Jasmine
• Simple to setup
• Mocking support
• Widely used with Angular

Mocha
• Most used nowadays
• Very flexible
• Needs some additional setup time

Jest
• UI testing with snapshots
• Becoming increasingly popular
• Best choice when using React

Karma
• Flexible
• Run tests in a page-like environment
• Setup can be somewhat cumbersome

Other tools you might want to look into include Protractor, Cucum-
berJS, Ava, Chai, Enzyme .

202

Final words

Either for your personal development tasks or for project needs, you
should invest effort in mastering frontend technologies .

“Any application that can be written in JavaScript will eventually
be written in JavaScript.” – Atwood’s Law

By Janko Sokolović

203

How to deal with flaky system tests

The higher we climb up the test automation pyramid, the less oxy-
gen there is in the air. Some tests are fine with that. But others can’t
handle it and randomly fail every now and then . These poor tests
need help . In this article I will focus on strategies to keep these tests
as stable as possible .

The problem with flakiness

A test that changes from red to green or green to red without any
code changes is considered flaky. Such tests are a burden for several
reasons . They might block you from merging to the mainline or to
release a new version of your product . They might be a symptom of
an unstable test or a problem in the product . In the end, dealing with
all these issues eats up valuable time . That’s why we want to avoid
flaky tests as much as possible.

Increase your chances of success

Avoid broken windows

As soon as one test fails, insist on fixing it. Otherwise people might
start ignoring failures and you’ll end up in a broken window situation .
There’s a root cause to every flaky test. Either it’s the test itself that
needs improvement or it’s a bug in the software .

Control as much as possible

The more control you have over the system under test (SUT) and the

204

test data, the higher your chances of getting the tests stable . There
are many ways to increase control . Here are some important ones:

• Preferably use system tests that cover only the system you are re-
sponsible for (at runtime) rather than system integration tests that
also include the systems of other teams . This requires simulators
to mock the other systems out .

• Define the exact versions of the libraries you are using in the code,
so that you don't get surprised by unintended updates that intro-
duce issues .

• Control the test data setup and automate it as much as possible .
• Make sure tests are independent of each other (i .e . one test must

not rely on the outcome of another test) .
• Increase testability by modifying the system code (e .g . by adding

automation IDs to the UI) .
• If your tests also cover other teams' systems, know when they do

their deployments or have downtimes .
• Keep continuous health checks separate from your test suite; they

should not have an impact on your build pipeline .

Timing is (almost) everything

Most issues involving flaky tests are related to timing and getting it
right is often hard .

• It's crucial to know when the testing framework implicitly waits for
an action to complete and when you have to add explicit wait code .

• Instead of fixed wait timeouts (e.g. 5 seconds), implement polling
that checks in a loop for a certain condition to become true . This is
much more stable .

• If your system under test has asynchronous behaviour, make sure
you understand it well and write the tests accordingly .

• Configure sensible timeouts.

205

Analyse failures systematically

Reproduce failures locally

If you have to rely on a CI server and test environment to reproduce
a failure, your feedback loop after every change will be very long .
This makes fixing the issue a cumbersome and inefficient procedure.
Therefore make sure you can start the test locally with the debugger
attached . The closer your CI environment matches your development
system, the higher the chances you can reproduce failures locally . If
the test does not fail as often as on the CI, consider running the test
in a loop to provoke a local failure faster .

Unless your development machine has exactly the same setup as the
CI server, some failures will not be reproducible locally . You will be
forced to analyse them on the CI environment . One of the build nodes
could temporarily be used to analyse the issue while the others can
still be used by the rest of the team .

Collect data from many runs

If you have to deal with flaky tests that fail very rarely, running the
tests a few times a day might not give you enough data for analysis .
Therefore, schedule the tests to run as often as you can . In a recent
project, we ran the test suite once every hour throughout the night .
This gave us a lot of data to analyse stability the next morning .

Aggregate results from feature branches

You might actually have a lot of data from running the tests on each
feature branch, but it is hard to see patterns if you don't have the
test runs in an aggregated form . Collect all the test failures from all
branches in a single place to analyse them . You might start off with

206

an Excel sheet, but will probably soon decide to automate the data
collection .

Visualise

Visualise failures in a matrix where one dimension is the test run and
the other is the test scenario . This might reveal patterns that can give
you a hint where the problem lies . For example, if a certain group of
tests always fail together, you might want to check what they have in
common . And if a single test only fails every 10th time or so, plotting it
on a graph will make it apparent that there's a problem with this test .

Analyse logs and metrics

Logs and metrics from the CI server that runs the test and from the
SUT might give you valuable hints as to the root cause . If your servers
run in VMs, you might also want to collect metrics and log files from
the VM host . Collect everything in a central place so you can analyse
the timeline of events and look for recurring patterns .

If all else fails

Rerun failed tests automatically

If you can't tame the beast or if you need a quick fix to buy you some
time for a proper solution, you might want to rerun failed tests once
or twice automatically (in Java you could use a JUnit rule for this) . If
the rerun is successful, the build is successful . This will make your
build runs a bit slower, but might spare you a rerun of the entire build
pipeline . However, this approach might have the undesirable side ef-
fect that people care less about writing stable tests as flaky ones don't
hurt so much any more .

207

Delete it

If, despite all your efforts, you find it impossible to get some tests sta-
ble enough, consider deleting them . Think about how you can replace
them with other risk mitigation strategies . Maybe a unit or integra-
tion test can cover most of the risk . In some cases you might need a
scripted manual test scenario. Or you may find out that it's already
covered by the exploratory testing that is done before each release .

By Adrian Herzog

208

Making your tests run fast

Automated testing of software is generally a good thing and is ac-
cepted as a standard practice in virtually all projects these days . How-
ever, more often than not, people get annoyed by the tests over time .
They keep complaining about having to wait for those darn tests to
finish on the CI, so they can finally merge their PR.

Clearly, no one sets out with the intention of slowing everyone down .
But then again, people rarely make it a priority to keep things fast .
Which is understandable and sounds "pragmatic" when there are only
a handful of tests . Fast forward six months and people are sitting idle,
staring at the progress indicator of the build pipeline, hoping that
they did not break another test and will not have to waste another 30
minutes of their life .

So, what should you do instead?

There are a few strategies and most of them don't incur any additional
cost – if done right from the start!

Don't write tests in the first place

Depending on the technology and programming language, there are
ways to prevent certain errors by taking advantage of the compiler/
type system or static code analysis . This gets rid of tests which need
to verify behaviour at runtime that can be checked at compile/build
time . A simple example would be using an unsigned integer type in-
stead of a signed integer one if negative values are not allowed, but it
can and should be applied to more complex scenarios as well .

209

Don't repeat yourself (too much)

If a particular functionality has been tested once, there is no need to
have it tested again and again . There is also no value in testing a bunch
of random cases instead of only one . Only add additional cases if the
additional case proves some additional property of the system under
test . Of course, there will be some overlap between tests, especially
between the different levels, but it pays to ask yourself for every test
if it really adds valuable insight . Not only will this avoid additional
execution time – which can be significant for integration and system
level tests – but it will also make the test suite more maintainable, as
you don't have to change many tests if a requirement changes .

Get time under your control

The first time you need to implement time-dependent functionality,
ensure the progression of time can be controlled from the outside .
Provide an abstraction over any time-related primitives you might be
using (getting the current time, waiting for time to pass, . . .), which
can be controlled from your tests to make time progress exactly and
instantly when you need it to . That allows tests which check for, say,
a 20-second timeout, to execute instantly and make testing of longer
time spans (hours, days or years!) feasible .

Separate, separate, separate

Be clear about what properties are tested on which level (e .g . unit,
integration, system) and keep those levels separated . Having clearly
separated tests, "horizontally", allows you to define different guide-
lines, constraints and approaches to each level and makes it easy to
run them independently . In addition to this "horizontal" separation,
tests and their corresponding test subjects should also be separated
"vertically" by applying the various techniques of modularization .

210

This enables you to run tests only if the corresponding code has been
modified.

What if people are still complaining?

Even after you have done everything you can to make running your
test suites fast, it likely won't be enough . Be it the sheer amount of
test cases or the requirement for a lot of integration and system level
testing, at some point things are going to be "slow" . But there are some
additional strategies for dealing with that:

Parallelize

Run test cases and suites in parallel, as much as possible . Do not shy
away from distributing the execution across multiple (virtual) ma-
chines . Additional design and/or refactoring may be required to make
that possible . However, if you have already applied all of the points
above, you should usually be able to parallelize quite a bit without
changing anything .

Prioritize (and fail early)

Categorize/annotate all tests based on how essential they are and
how quick they are . The default should be for a test to be "most es-
sential" and "fastest" and mark every test that deviates from that,
e .g ., exhausting options, testing more (theoretical) corner cases or
more complex and slow workflows. Order all from "most essential" to
"least essential", then from "fastest" to "slowest", execute them in that
order and stop on the first failed test. While this does not help when
every test passes, it helps to stop wasting time and resources when
something fails .

211

Prune

Identify and remove tests which are not covering actual requirements
anymore or never covered any particular requirements and are just
testing implementation details . Just remove those tests . While this is
not always easy and requires a good understanding of the system and
its requirements, it is worth considering from time to time .

I don't have time to do all of that.
What should I do?

If nothing else, keep an eye on test execution time . Measure it, vis-
ualize it and make people aware of it . Listen to people around you,
if they start complaining about it . Just being aware that this might
become a real problem in the future is often enough to plan for it right
from the start .

By Simon Lehmann

212

Optimization and realization

There is no developer that hasn’t heard the famous Donald Knuth
quote: "Premature optimization is the root of all evil ." Often this sen-
tence is understood in the context of performance, i .e . the speed of
the software execution . However, it refers more to something else .

It's about the value that some code brings into the product .

During the development, the programmer's goal is to write the code
that effectively meets the required functionality . However, often in
the desire to write a high-quality code, a programmer goes too far and
introduces complexity that is greater than its real worth (over-engi-
neering) . In other words, the value of the code decreases because of
the unnecessary increases in complexity . Similarly, sometimes the
development focuses on features that are not critical and do not give
the product essential value . Instead, development tackles less relevant
features .

In this context, premature optimization is all the work that was not
spent on the production of real value . The alternative to optimization
is realization: work that actually brings value . Now the Knuth sen-
tence is more meaningful .

Striking the balance between optimization and realization is not re-
served for planning and top-level architecture . It make sense to view
work on everyday code from this perspective . No matter whether it is
a feature or a code block, try to determine if it is an optimization or a
realization . If it is an optimization, work out whether it is premature
or not . Are you working on something that brings little value, or even
no value, at the moment? Are you introducing unnecessary complex-
ity? Are you adding more edge cases than actually needed?

213

The virtue is to avoid complexity . Detect it on time by thinking about
premature optimization .

By Igor Spasić

214

Rules for building systems

This article discusses the application of the Separation of Concerns
concept in Build & CI systems . It highlights the difference between a
build system and a build management system, the responsibilities
of each person and some considerations regarding the consequences
when following the rules .

It is structured out as a set of rules to follow when creating build and
CI infrastructure for your project .

Think of each rule as a T .A .R .D .I .S .: they are bigger on the inside .

The purpose of this set of rules is to guide us toward C .R .I .S .P . (Com-
plete, Repeatable, Informative, Scheduled, Portable) builds1 .

Distinctions, definitions

To identify the separate concerns, we should provide definitions for
the terms:

A build system performs transformations in sequence in accordance
with a predetermined dependency chain, to create artefacts . A subset
of this is the compilation of sources to binaries .

A build management system coordinates build system(s) .

Specificity

A build system is highly project specific. It is affected by toolchains,

215

project conventions and can generally only run on a specially config-
ured host .

A build management system can run everywhere as long as it can
start the build system on the appropriate host. The specificity of a
build management system is limited to the number of version control
systems it supports . Although it theoretically doesn't have to provide
version control support, it is a given that such support will be provided
in the minimum feature set .

The Makefile is the build system

Make, rake, Ant, MSBuild, Gradle, grunt etc . are not build systems2 .
You create build systems with them .

Jenkins, TeamCity, TravisCI, BuildBot etc . are build management sys-
tems .

The Rules

1. I am Build Server

Rule #1 requires that the build server follows the exact same steps as
any other developer .

Expressed the other way around: Every developer has to be able to
re-create the complete build process locally, without deviations, when
given the development environment and the correct version of the
source tree .

216

2. When the build server says no, it means no!

Rule #2 says that if a build server marks a build as broken, then the
build is broken . Drop everything and read the logs .

There is no "it works for me", your build server is Judge Dredd: judge,
juror and executioner .

You can only adhere to this rule if you have followed Rule #1

3. IDEs are the enemy A.K.A. F5 is not a build process

This means that if you drive your development process from an IDE
there is no way you can adhere to the Build Rules .

This rule has major consequences regarding the development envi-
ronment and ties directly into the subject of allowing your developers
to use whatever tools they feel comfortable with .

Adhering to the rules

To create a system that adheres to rules #1 & #2, you have to think
like a Lego builder: Lots of small, specialized tasks that do one thing
and can be used to compose more complex processes .

As an example, doing a releases task instead of doing everything in
one big implementation will depend on the build tasks for each of the
libraries and applications and the tasks that run the tests etc . Using
the rake syntax in a contrived example one would do

217

task :release =>[:"test:all"]
task :"test:all" => [:"test:foo", :"test:bar"]
task :"test:foo" => [:"build:foo"]

A developer will probably use the component tasks a lot more than
the composite release task and we will certainly have a build job on
the server that only does releases .

This is a necessity since the system needs to satisfy different usage
patterns:

• The build server uses composite tasks that implement complete
workflows.

• The developer uses component tasks with surgical precision in the
interests of speed and effectiveness .

From the perspective of the build system engineer, this approach is
self-evident for the same reason it is evident when building appli-
cations: Small chunks of code are easier to manage, test, reuse and
understand .

Consequences

The above rules have widespread consequences in structuring the
build and CI processes of a project .

The first rule sets the frame within which the build system operates.
To adhere to it we avoid using IDE integrations but also build man-
agement system integrations (Maven integration in Jenkins being one
such example). Handling dependencies, configuring toolchains, and
even things like naming conventions are left to the build system . The

218

build server becomes just another user, performing exactly the same
steps a human developer would use.

The first rule combined with the third lead to the prioritisation of
command line usage . This doesn't mean we do everything just from
the command line but rather that CLI is the first priority when adding
features to the tools comprising the development environment . CLI
is the one interface that both humans and bots can operate with the
same facility .

The second rule's consequences are a bit more subtle . Avoiding incon-
sistencies between execution environments is a critical issue and to
handle it correctly we need to introduce the concept of a consistent
development environment (usually called the 'project VM' as we use
virtual machines for encapsulation – although at the time of writing
containerisation offers a less resource-intensive approach for specific
development scenarios) . The challenge of maintaining and replicat-
ing such an environment unavoidably leads to the introduction of a
provisioning (A.K.A. configuration management) tool such as Chef,
Ansible or Puppet .

Who does what

Another way to look at it is that a build system determines the how
and what (build, test, package, deploy, release) while a build manage-
ment system determines the where and when (which CI node, when
to trigger etc .) .

All of this segues nicely into the final rule:

219

4. Your (build) infrastructure is a software
development project

Rule #4 means you need tests and CI and a plan . You need to budget for
CI, for creating a build system specific to your project, and for teaching
people how to use it .

To make matters worse, your users are some of the most impatient
and downright difficult clients on the face of the planet. They want
everything perfect: robust, simple and fast and they want it yesterday .
You had better be dogfooding by this point .

By Vassilis Rizopoulos

[1] The concept of CRISP builds was first introduced by Mike Clark in
his book Pragmatic Project Automation

[2] We can debate on CMake and Maven

220

Successful agile system development
with continuous system integration

Continuous integration (CI) is a core practice of successful agile soft-
ware development . A practice that makes agile systems development,
e .g ., development of a medical device, successful as well!

Continuous integration of software

A CI infrastructure for software development (hereinafter referred
to as „Software CI“) enables frequent integration of locally developed
source code to the mainline of a software project, even several times
a day . At the end of the build process, automated tests are run on dif-
ferent integration levels . Software CI helps in ensuring the consistency
of the software and creating a potentially shippable software product
on a regular basis .

The same advantages can be achieved by using embedded software
as part of a system development project . Embedded software can be
developed in an agile way almost without interfering with the devel-
opment of the mechanical or electronic parts of a device . The electron-
ics of a device – the PCB containing the specific processor – may be
under development itself . In this case, the embedded software could
first be developed as a simulation running on a PC workstation. In the
next step, an evaluation board of the platform vendor could be used
as long as the device electronics are not available . In the last step, the
software is integrated on the final device’s electronics.

Each of these targets (simulation, evaluation board, device electronics)
can successively be integrated into the Software CI infrastructure .
This ensures that the evolving software runs on the available target .

221

However, the different engineering disciplines still need to agree on
the implementation of functional requirements, non-functional re-
quirements, safety requirements, interfaces, etc . Software CI as part
of a system development project is important for ensuring the desired
software quality over time . However, CI only on the software level
does not really address the risk of failing during (final) system inte-
gration – aka “big bang integration” .

Continuous integration on the system level

System CI helps with avoiding such “big bang integration” effects . It
is far from realistic to achieve the continuity of the fast integration
cycles of software, e .g ., check-in builds, on the system level . However,
the principle of continuously integrating parts to a whole applies at the
system level as well . The continuity of software integration is based
on the integration of source code parts into the mainline whereas
the continuity of system integration is based on the availability of
system parts over time, e .g ., PCBs, mechanical parts, cables, software
functionality, infrastructure, test stands, etc .

The evolution of the System CI is driven by a roughly planned “integra-
tion vision” . This may start as just a sketch on a whiteboard depicting
how the successively available system parts might be put together
over time . The integration vision is not a detailed plan, but provides
guidance for the integration activities on the system level . The con-
crete integration of parts is planned and performed as they become
available – or maybe a short time in advance . The integration itself is
performed as simply as possible . For example, a specially developed
sophisticated mechanical fixation is not needed if a tape is sufficient
to attach one part to another in an early lab model .

System CI is a constant flow of adding parts and replacing parts with,

222

for example, more mature parts or new revisions of parts . The evolv-
ing system is the central target of the System CI infrastructure . The
infrastructure takes care of, among other things, building the soft-
ware, deploying it to the integrated system, and automatically testing
the realised system functionality . This allows for regression testing on
the system level, which is important in dealing with all the changes
on the system integration – as software regression testing is impor-
tant in dealing with all the changes in software development . The
order of particularly meaningful system integration steps needs to be
planned, at least roughly . Given a product vision and a draft system
architecture, a value-based and risk-based system backlog planning
are the basis for successful continuous system integration that low-
ers the risk of late design breakage and increases the opportunity to
develop the right product .

Fail early!

System CI enables us to fail early and thus gives us time to react,
change, and test again in fast cycles . Hence, System CI heavily reduces
the risk of late design breakage . Additionally, the progress of system
development does not have to be deduced or guessed indirectly, but
can be demonstrated with the current state of the integrated system –
at any point in time along the development lifecycle .

Increase the opportunity to develop the right product by applying this
in your next systems project!

By Erik Steiner

223

The best technology
is not always the best choice

As a technology consultant, you are responsible for recommending a
technology that is suitable for the customer . That sounds simple, but
it isn‘t . Especially if you get to know about a lot of new technologies at
your company, and discuss them with colleagues so you become very
familiar with them . The context in which the technology is to be used
has to be taken into account . This means that the most advanced tech-
nology is not always the right technology for the customer . This also
sounds like a trivial statement at first, but when you can see yourself
how the latest technology enables the functional requirements X and
Z, and fulfils the non-functional requirement Y, the decision can be
difficult, and it becomes a real trade-off decision.

Using two real-life examples, I would like to show how difficult this
decision can be .

A machine manufacturer wanted to develop new setup and operating
software for its highly-specialised machinery . What exactly the data
model should look like at the end was not defined, and there was a
requirement for an accurate audit of who had made what settings
on the machine . We decided to use event sourcing . The primary data
source was not a relational database model that mapped the entities,
but a list of events that described the change in the system state . This
gave us a number of advantages:

• The object model you are working on can be further developed with-
out regard to the past . All you have to do is make sure that the
events that are already saved can be applied to the new data model .
This means that you can always create it again .

• We guaranteed that we have all required data to provide the audit .

224

• In contrast to an audit table that is maintained separately, we used
the events to intrinsically prevent the developers from forgetting
an audit entry .

As already planned from the outset, the machine manufacturer built
up a powerful development team of its own, and ultimately took over
responsibility for the development . However, the new development
team was primarily familiar with the technologies for traditional
data-driven applications, and when they took over responsibility for
the architecture and further development of the machine software,
they were uncomfortable with an architecture they had never seen
before . In the end, they switched the application back to a relational
database . And they are currently enjoying success with that . In ret-
rospect, we do not feel that we did much wrong, but we apparently
underestimated the uncertainty felt by a new team regarding this
architecture, and the event sourcing concept was not strictly neces-
sary. It was purely beneficial.

The second example: In 2009/2010, Eric Meijer at Microsoft invented
Reactive Extensions . This was initially a .NET library, which made it
possible to express events as objects, and complex event sequences
as higher-order events . Even early examples demonstrated the broad
spectrum of use of this library:

• One example showed how a sensor value becomes a valid alarm via
multiple transformations . This means periodically querying values,
creating averages using last values, mapping to binary values, and
propagating only in the case of changes .

• Another example showed how the requirements for an auto-com-
plete selection box can be implemented . This means that the search
query for the suggestions is not submitted if the text is empty or
not typed in, and also that a running query is interrupted if further
entries are typed in .

225

• At a very early stage, we also saw the value in gesture recognition,
and we were able to identify certain gestures from a sequence of
specific movements, and demonstrated this at trade show appear-
ances with the help of Kinect .

• Others have also realised the great value in this library, so it has
been ported to numerous programming languages .

• Microsoft has also included the library in the .NET Framework for
its Windows phones .

However, the library has enjoyed only limited market penetration over
the years, so it was necessary to be mindful of whether the library
could be used in all good conscience . The library uses some approaches
from functional programming . So, before any event occurs, the entire
function chains are defined, in terms of what should happen when
an event should occur . These events are provided as observables, and
the events are only generated or observed when a consumer of these
observables is interested in the potential outcomes . As powerful as
this concept is, it can cause headaches for an untrained developer .

There was a case with one of our projects, in which the usage of Re-
active Extensions was removed because the developer, who had to fix
a complicated bug, did not understand the code . In the end, the bug
was somewhere else, but the code kept removed .

There is a positive example of one customer using Reactive Extensions
as an internal API for web services . That was risky, because although
the solution was technically superior to the alternatives, it was not
a common approach at that time. It was only justifiable because the
customer already had a stable development team that could support
the decision .

The example also shows that a good solution takes years and market-
ing to become mainstream . Google has used the JavaScript variant

226

of Reactive Extensions (RxJS) in the Angular2 framework to do just
that – but 5 years later . There are now lectures at numerous confer-
ences about RxJS and how it can be used . Google has helped to bring
it out of its niche . You can now recommend this technology even if
there will not be long-term access to the development team to provide
training in it .

So, if a technology or architecture is interesting because it is suitable
for the problem but is niche or still upcoming, you need to make sure
that the development team understands the technology, recognises
its benefits and believes in it. Because the team will not get much
confirmation that it is using the right technology.

By Carsten Kind

227

Watch your state

In May 1960, the legendary Peugeot 404 was presented to the public .
Its manufacturing process was controlled by manually curated lists
in which each car in the production pipeline had its particular en-
try. Each car was assembled according to a fixed plan. Consequently,
spontaneous adaptations or dynamic modifications of the production
plan were impossible when components were suddenly missing, or
when experts responsible for certain tasks got sick .

It’s all about state

The main factor enabling the transition from the centralised setup of
the early 60s to today‘s decentralised Industry 4 .0 is the way in which
state is handled: today, each car body automatically knows its exact
specification and configuration. Such local state provides a great deal
of flexibility: the order in which cars are assembled can be adapted at

228

any time . No central list or global database needs to be queried or up-
dated . Fewer central points of failure and bottlenecks exist . Moreover,
cars and other manufactured „smart“ items can be connected, they
can identify each other, and they can exchange information using a
decentralised ad hoc mesh-up topology . The exchange between the
manufactured items is even possible during the production process .
Thanks to early feedback, fewer dependencies, and more independent
production units, it is possible to achieve early adaptation and just-
in-time production. Consequently, production quality is significantly
improved and costs are reduced .

State in today’s communication protocols

Turning from industrial production to Internet communication pro-
tocols, the goals of improving quality and reducing costs translate to
reducing latency and lowering energy consumption:

1 . When Internet user Alice connects to her online bank, she needs
to authenticate herself before accessing her savings and trans-
actions . To initiate such an authenticated session, she provides
unique credentials (login and password, and hopefully a second
authentication factor) . If the login is successful, the bank grants
Alice an access token valid for that very session . Alice can then
seamlessly re-authenticate herself during the session using that
token .

 Such a token contains information about the session, in particular,
information to identify the user associated with the session . The
token thus represents session state . The question we ask is where
and how the bank should manage such temporary access tokens?
The bank could store a copy of millions of such session tokens and
perform equality checks with the tokens that Alice sends with her

229

requests . If Alice‘s token exists in the list of copied tokens, the bank
can safely assume it‘s indeed Alice who is connecting .

 This, however, is very inefficient as the bank‘s server needs to
perform several memory lookups for each customer request to
fetch the corresponding token . Unfortunately, most web applica-
tion firewalls (WAFs) today work exactly this way.

Before discussing smarter ways of handling access tokens, we will
look at two more examples .

2 . Packet forwarding in today‘s Internet: when Alice sends a data
packet to Bob, she adds Bob‘s IP address to the packet header and
hands the packet over to her Internet provider . From then on, every
router on the path from Alice to Bob extracts Bob‘s address from
the packet to do a database lookup to retrieve information about
the next hop, that is, where to forward the packet to . Each router
bases its forwarding decision on local state that was previously
learned from neighbouring routers .

 This procedure is not only insecure (as the neighbours‘ informa-
tion is not properly authenticated), but also very energy-consum-
ing and inefficient (as millions of packets per second need to be
looked up) . Good news: a more secure and – at the same time –
more efficient solution exists.

3 . Finally, TCP‘s vulnerability against denial-of-service attacks: in the
initial step of the three-way handshake between client and server,
the server needs to store information about the client in order to
remember the client when it completes the handshake . The stor-
age of even small amounts of state can lead to attacks, when huge
numbers of clients pretend to connect to the server, but execute
only the first step of the three-way handshake. The server cannot

230

know upfront if a client is malicious and thus keeps waiting for
each client to come back to complete the handshake . Soon, when
many clients connect simultaneously, the server‘s resources are
exhausted and new connections cannot be accepted . Users then
perceive the server as unavailable, aka under a denial-of-service
attack .

Higher latency, reduced throughput, increased energy consumption,
DoS attacks – what is the solution to prevent these design flaws in
authentication, packet forwarding, and TCP? All examples have in
common a non-optimal handling of state that is frequently consulted
as part of mission-critical business processes .

Remediation

A crucial insight for remediation is that state should be stored by the
service requester, not by the service provider . Examples include waiting
stamps at the post office counter: they are stored by the waiting cus-
tomer, not by the post department . Except for a single global counter,
the post department keeps no state for each customer waiting in line .

A very similar solution works for web authentication: The server should
not remember session state for each client, but send to the client a cryp-
tographically signed token with information about the session state .
The client presents such token whenever it connects to the server, who
then verifies the token‘s validity. Instruction sets on modern CPUs verify
authenticated AES messages within roughly 50 cycles (20ns at 2 .5GHz) .
For comparison: a DRAM memory lookup takes up to 200 cycles, and a
round trip in a data centre takes up to 500,000ns .

Packet forwarding should ideally work similarly: each packet should
contain cryptographically protected information about its path to the

231

destination . Each router on the path checks such forwarding informa-
tion by efficiently verifying an AES-MAC, instead of wasting energy
and time on costly database lookups. The efficacy of this solution is
demonstrated by the Internet architecture SCION .

Finally, TCP‘s vulnerability can be fixed by so-called SYN cookies, i.e.
sequence numbers that encode information about the client so that
state at the server can be significantly reduced. Due to space con-
straints, we refer to the literature for more information .

To conclude, the storage locations of all application state are crucial
for enabling efficient system processes. Ideally, state is treated as a
first-class citizen and outsourced to users and service requesters. In
order to avoid abuse of functionality based on the outsourced state,
efficient cryptography is required. Fortunately, today‘s cryptography
not only makes the entire application more secure, but – perhaps
surprisingly at first glance – also more efficient.

By Raphael M. Reischuk

232

You always have time
for a proper root cause analysis

A production issue will pop up, even in solid software . Don‘t panic .

We, as software engineers, are more than eager to resolve the issue
quickly . We should be, yet we should never stop being careful and
analytical . Otherwise we might deploy another embarrassing bug or
suppress the problem without solving it, making everything worse .

Investing an hour in analysis is always worth it .

People will describe the symptoms

Keep in mind that users will report symptoms . This has nothing to
do with a lack of understanding or skill . They have an outside view .

What you need to find, and then fix, is the problem (or, more precisely,
its cause) .

Don‘t jump to conclusions . Listen to all the clues . Analyse . Reproduce .
Rethink. Refine (or create) the ticket. Remember that every bug is a
strong indicator of a missing test, so think of test cases which are
explicit about expected and actual results . And write tests to cover
your findings.

Don‘t have someone else do the analysis for you; you need to be part of
the thought process . This might very well take longer than the coding .
But if you don‘t do this slowly and deliberately, you might fix only half
the problem or even make it worse . Don‘t be that cowboy .

233

Can we be more specific?

Absolutely!
Let‘s have a look at some of the painfully obvious yet all too common
pitfalls .

Not really fixing the issue. Or: Not fixing the real issue.

Do you feel some guilt reading through the three examples below?
I do .

• Added a fix in the wrong place. Didn‘t solve the problem, optionally
introduced another one?

• Fixed a NullReferenceException by adding another if, ended up with
no exception but a wrong result?

• Divided an x through total to make it relative, deployed to produc-
tion, got an „unexpected“ DivideByZeroException the day after?

Things are often more subtle and not that silly . What the three ex-
amples have in common though is that we didn‘t think it through all
the way . We knew what shouldn‘t happen, but didn‘t find out why it
did and what should happen .

“We cannot reproduce this!” or “It’s expected behaviour.”

It‘s a chance to improve the error message .

You couldn‘t find customer #316 in the DB, because it actually doesn‘t
exist? A NullReferenceException with a stack trace is still a bug . Tell
them what‘s wrong, in their language, so everyone can understand
the problem without a debugger .

Also do this when you cannot reproduce a problem . Don‘t try to solve

234

it based on assumptions; refine your error handling and use it to find
the problem .

... This might have happened somewhere else

„I think we might divide by total there, there and there too . We should
check if that also throws a DivideByZeroException .“

It‘s great to think about it. The problem might be a pattern. But fix that
separately . Equally carefully!

Does this happen too often? That‘s what the DRY principle is about .

There’s a “real solution” and a “quick solution” (and a “workaround”)

After understanding the problem, there might be multiple options to
solve or work around it:

1 . adding another if in method x
2 . refactoring the accounting system interface to support zero totals
3 . breaking down the system into different microservices

It‘s fine to add an if to get an imminent problem out of the way – after
you have thought it through! In any case, keep all the options in your
backlog . After adding the 5th if, another solution could be increasingly
compelling .

Conclusion

All issues, even seemingly trivial ones, demand careful and thorough
analysis . The problem might seem obvious, but it‘s always worth dou-
ble-checking . You always have time for that .

235

Having said that, be pragmatic with the fix. Don‘t over-engineer. De-
cide what‘s needed now to put out the fire, and what should be done
later to prevent further blazes .

But let it be an educated decision . And always test thoroughly .

By Matthias Meid

